Soliton structure of the Drinfel’d-Sokolov-Wilson equation
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An integrable equation due to Drinfel’d and Sokolov [Sov. Math. Dokl. 23, 457 (1981)] and
Wilson [Phys. Lett. A 89, 332 (1982)] (DSW) is studied in detail. It is shown how this system
can be obtained as a six-reduction of the Kadomtsev—Petviashvili hierarchy. This equation
presents a novel type of solutions called static solitons: they are static solutions that interact with
moving solitons without deformations. Examples of such solutions are given, together with a
general procedure for their construction. Finally the Painlevé analysis of the DSW equation is
performed directly on the bilinear form, which constitutes a new application of the singularity

analysis method.

I. INTRODUCTION

In a previous work’ one of us (Hirota), in collaboration
with Satsuma, has proposed a system of coupled KdV equa-
tions, describing the interaction of two long waves with dif-
ferent dispersion relations:

u, —3(u,., +6uu,) =2bds,,

$: + P + 3ug, =0.

The integrability of (1.1) was subsequently proved by Ref. 2,
where it was shown that this equation is a special case of the
four-reduced Kadomtsev—Petviashvili (KP) hierarchy,
which has been studied in detail by the Kyoto group.>*
Moreover, as has been shown by Wilson,” Eq. (1.1) can be
obtained within a general construction due to Drinfel’d and
Sokolov,® which involved affine Lie algebras. Wilson has
shown in fact how this equation can be related to the affine
(Kac-Moody) Lie algebra C{". Starting from this general
Drinfel’d-Sokolov construction, Wilson also has identified
another interesting equation that is associated to the algebra
D . This equation reads

u, = 3¢¢x’

b0 =2 s + 2, +u.b,
and will be referred to in what follows as the Drinfel’d-Soko-
lov-Wilson (DSW) equation. This equation possesses an in-
finite number of conservation laws and, in fact, a Lax repre-
sentation L, = [P,L] of the form

L= (:a+(u+¢)—+ (u, +¢x)

(1.1)

(1.2)

33
33 a3 1 (1.3)
P=-2 4% (4. —u).
x> “ax 2 (@ — )

Moreover, in a recent work, Jimbo and Miwa’ have shown

*) Permanent address: Hiroshima University, Faculty of Engineering, RHiga-
shi-Hiroshima 724, Japan.
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that Eq. (1.2) is also a member of the KP hierarchy, thus
confirming its integrability.

The object of the present work is to study in detail Eq.
(1.2) from the point of view of the soliton structure. As a
matter of fact the DSW equation presents very unusual kinds
of solutions that we call static solitons. It is quite easy to
show that Eq. (1.2) possesses solutions that are static: any
time-independent function u (together with ¢ = 0) is a solu-
tion. However these static solutions do not, in general, be-
have as solitons when they collide with the (also existing)
moving solitons of the equation. Only when these static solu-
tions are of a very particular form do they indeed lead to
elastic scattering. The aim of this paper is to study these
novel (to the extent of our knowledge) static-soliton fea-
tures.

In Sec. II, we show how one can obtain the DSW equa-
tion using the set of equations of the KP and modified KP
hierarchies of Jimbo and Miwa, implementing the appropri-
ate reductions. By the same method, we derive another equa-
tion associated to the D (¥ affine Lie algebra, which has al-
ready been studied by Ito® in a slightly different form and
which presents also solutions of the static soliton kind. In
Sec. III, we derive the precise form of the static solutions in
two different ways. Finally, Sec. IV is devoted to the singu-
larity analysis of the DSW equations. The new feature in this
domain is that the Painlevé analysis is implemented directly
in the bilinear form, an approach that often can lead to sig-
nificant simplifications.

Il. DERIVATION OF THE DSW EQUATION

According to the Kyoto group the Kadomtsev-Pet-
viashvili (KP) hierarchy plays a fundamental role in the
classification of soliton equations. In fact, this hierarchy is
associated to the algebra gl( o ). By considering subalgebras
of gl( ) and their representations one can obtain various
types of integrable equations. We will not enter any details
concerning the general group-theoretical approach, which
can be found in great detail in the paper of Jimbo and Miwa.”
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We start from the KP equation

(u, +6uu, +u,,), +u, =0, (2.1)
which we can rewrite in bilinear form as

where u = 2(8%/9x?)log f and the bilinear operator are de-
fined as usuval through

D .TD;D :ff(x’yJ) : g(x,y,t)
- (i _ i)'" (i _ i)" (i _ _9_)"
x Ix dy dy/ \at ar’

Xflxp,t)g(x'y't")

y=y
Through a proper renaming (x—1, y—2, +—3) and rescal-
ing of coordinates the KP equation can be written as

(D} —4D\D, +3D3)f-f=0. (2.3)
In order to introduce the ~ function of Sato and Sato,> we
start from the two-soliton solution of KP:
f=1+exp(n,) + exp(n,) + ay, exp(7; + 7,),
with

(24)

N =1x, + mx, +nx; + 17
and
(L= h) —ad, = L) (n, —ny) +30m; —m,)?
(L+ L) =4, + L) (n, 4+ ny) +3(m, + 75)52

ap=

s

)

where the 7! are constants and /;, m;, and n, are related by
the dispersion relation

1% — 4L, + 3Im? =0. (2.6)

We write first the wave numbers / and m and frequency 7 in
terms of new variables p; and ¢;:

L=p,—q, m=pl—q, n=p;—q. 2.7

The dispersion relation is identically satisfied and the phase
shift a,, reduces to

ap= @ —p)(q— )/ (p1—q) (g, —p2).  (2.8)
Next, following the Kyoto group, we introduce our infinite
number of coordinates (infinite number of “times” ) x,, Xs,...
and write 7, as

=8+ Y (f —q)x,, (2.9)
n=1
8; being a constant.
From the two-soliton solution f we can construct the
two-soliton solution 7 involving an infinite number of co-

ordinates, through (2.9), as
=1+ exp(7,) + exp (772)

(P, —p2)(9: —q3)

P, —¢q2) (g, —p2)

In a similar way one can introduce the N-soliton 7 func-

tion. As has been shown,’ the 7 function satisfies simulta-

neously the whole hierarchy of the KP equation, which in
bilinear form can be written as

(D% —4D,D, +3D2)r -7 =0,

exp(7, + 712). (2.10)

(2.11)
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((D3 4 2Dy)D, — 3D\ D)r-7=0, (2.12)
(D¢ —20D3D, — 80D?2 + 144D, D,
—45D2D2)Dyr-7=0, (2.13)

(DS +4D,D, — 32D —9D2D? + 36D,D,)7- T =0,
(2.14)
etc.

The appropriate choice of the constants 6, allows one to
introduce the functions 7, defined as

T, =14+ (p,/q,)" exp (9,), (2.15)
for the one-soliton solution, and
=1+ (&) exp(7,) + (&) exp(7;)
q, q2
+ (M) ay, €xp(7; + 7,), (2.16)
99>

in the case of two solitons, and analogously for N solitons. It
is clear that all the 7, satisfy the hierarchy defined by (2.11),
(2.12), etc. Moreover one can introduce “modified” hierar-
chies, in which case 7, and 7, |, will berelated (through the
k-modified hierarchy). A particularly simple example is giv-
en by the modified KP itself, which can be obtained through
a Bicklund transformation on the solution of the KP, lead-
ing to the system

(D} +Dy)ry -7, =0, (2.17)
(Di —4D3—3D1D2)T0'7'1 =0- (2'18)
Once the hierarchies are established one can obtain soliton
equations by appropriate reductions. If one wishes to limit

oneself to the case of the D {2’ subalgebra, then the following
restrictions of 7, must be taken into account:

Tn+6v(x)=7-l—n(i)=7-n(x)’ (2.19)
9 _y (2.20)
ava

forn =0,1,2,... and v = 1,2,..., where x stands for (x,,x,,...)
and X is defined as X = (x,, — x,,X3, — X4,...). The second
equation, (2.20), indicates that all equations related to D §*’
are six-reductions of the KP hierarchies. The first relation
leads to the identities

To(x) = Te(X) =7, (x),

T_1(x) = 75(x) = 75(X), (2.21)
T_o(x) = 14(x) = 73(X).

In order to derive the equations we are interested in we will
use the first modified KP hierarchy, acting on 7, 7,. From
(2.19) we have

T1(x) = 7(X). (2.22)
We introduce f and g defined by
f= T0|x2=x.= =0
9% . (2.23)
axz X, =X, =--=0
From (2.23) we can write
To(xX) =f+ X8 + 0 (X3, %4...), (2.24)
71(x) = 7o(X) = f— X8 + O (X} ,X4,.0.),
Hirota, Grammaticos, and Ramani 1500



with fand g depending only on x,, . , and where the higher-
order terms will give contributions that disappear at the lim-
it x, = x4 = - = 0. We use the following two equations of
the first modified KP hierarchy:
(D} + Dy)7o- 7 =0, (2.25)
(D3D, +2D% —3D,D,D; + 6D¢)7y - 7, =0, (2.26)
and substitute 7,, 7, performing the x, derivations explicit-

ly. Moreover the action of D, is zero due to (2.20). This
leads directly to the equations

Dif.f+2g=0, (2.27)
(D3ID5+2D3%)f-f—6D\D;f-g=0. (2.28)

Putting u = (d/3x,)In f one can write the system (2.27)
and (2.28) in the form

RPN R R AR
ax? Ox, \Oxidx, Ix, Ox, ’
A more familiar form of this equation is the one studied by
Ito®:

(D2 +2D3iD;,)F-F=0. (2.30)
Puttingu = 2(3 /dx,)In F,ie.,.f= F? wegetthesameequa-
tion (2.29). In order to obtain the DSW equation we will use
the following members of the third modified KP hierarchy
acting on 7, 75, and 7, [which are related also by Eqgs.
(2.21)]:

(D} +8D,D;+6D3D,+3D% —6D,)7, - 7,5 =0,
(2.31)

(2.29)

(DS —40D3D, — 96D,Ds + 15D>D? — 90D 2D,
+30D32 + 60D,D,)7, - 7,5 =0, (2.32)
(D —8D3D, +16D2 —9D2D2 — 18D2D, + 6D
+ 36D,D, + 48D¢)7, - 7, 3 =0. (2.33)

These equations can be further simplified. First the term
involving Dy can be omitted, as we are performing a six-
reduction. Next we use the following symmetry argument:
writing any of the operators on the third modified KP as
P(D), wehave P(D)(7_,-7,) =0,P(D)(1,+75) =0, and
as 7_,(x)=75(x) |[from (2.21)], we also have
P(D)(75-7,) =0. Using the symmetry properties of
the bilinear D operator we have P(D)(rs-7,)
=P(—D)(r,-75) =0. Thus [P(D)+P(—D)]
X (75« 75) = 0, which means that only the even part of Eqs.
(2.31)—(2.33) need be considered. Next one can introduce

f and g through f=7,| _,_ . _, g=(dr/
12229 ) FUU
which leads to the following expression for 7,:

T(x) =f+ x84+ Ix3h,

Ts(x) =1(X) =f—x,g + b3 h, (2.34)

where the terms not written explicitly have vanishing contri-
butions at the limit x = %. From the KP equations (2.11),
we obtain

(D% —4D,\D;)f-f+ 6(/h —g*) =0, (2.35)
while (2.31) gives us
(D} +8D\Dy)f-f+6(fh+g*) =0. (2.36)
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Subtracting (2.35) from (2.36) we obtain
D\Dif-f+8 =0, (2.37)

which is the first equation of the DSW system: in order to
obtain the second equation we start by eliminating D,D,
between (2.32) and (2.33) after odd terms have been delet-
ed. This gives us

(DS +40D3D, + 144D, D,
+40D% —45D%D3)1,-75=0

or, equivalently,

(D$ +40D3D?% + 144D, D5+ 40D3)f - f
~90D3(f-h+g-g)=0.

Similarly (2.13) applied on 7, - 7, gives

(D% —20D3D; — 80D + 144D .D5)f - f
—90D3ig-g=0.

Subtracting (2.40) from (2.39) leads to
(DD, +2D%)f-f—3Dig.g=0, (2.41)

which is the second equation of the DSW system. In fact
putting v = (8 /dx,)log fand ¢ = g/fin (2.37) and (2.41)
results in

ov

(2.38)

(2.39)

(2.40)

2— 4+ ¢*=0, (2.42)
x5
3 3 ( . 3% (a¢)2 2 &
X+ 2 (292l _(22) 132 %)y,
¢8x3+6x1(2¢ ox? Ox, +34 8x1)
(2.43)

which coincide with (1.2) provided u = 3 dv/dx,.

lll. STATIC AND MOVING SOLITON SOLUTION

By inspecting Egs. (2.29), (2.42), and (2.43), one can
check that any static object u(x,?) =u(x) and v(x,t)
= p(x),0(x,t) = 0, respectively, is a solution. Still among
these solutions there must exist some special objects that
play the role of soliton solutions. They are, however, harder
to define than normal moving solitons. Indeed usually a soli-
ton is a traveling wave with vanishing boundary conditions
and giving the velocity determines entirely the soliton. How-
ever, the characteristic property of the soliton, i.e., what dis-
tinguishes a soliton of an integrable equation from a solitary
traveling wave of a nonintegrable equation is that solitons
interact by phase-shifting only. For Egs. (2.29), (2.42), and
(2.43), where the zero-velocity case is highly degenerate,
boundary conditions are insufficient. However one can still
determine a “static” soliton by identifying it to a static solu-
tion, which, upon interacting with any number of moving
solitons (previously determined in the usual way), is shifted
with no further deformation and induces only phase shifts on
the moving solitons. Let us illustrate that on Eq. (2.29),
which we write in bilinear form as

(D?+2D3D,)F-F=0.

We first look for a moving soliton as F=1 + ¢”7 with
7 =kx+ Q¢ and readily find the dispersion relation
Q(Q+2k%) =0. So a regular moving soliton has

Hirota, Grammaticos, and Ramani 1501



Q = — 2k* The simplest choice of a static soliton, centered
at the origin, would be

F=1+4+¢ with {=px+gq. (3.1)
This, of course, is a solution, but so would be any static ob-
ject. We should rather check whether (3.1) satisfies our de-

finition upon interaction: this will be the case if a two-soliton
solution can be found of the form

F=14+e"+e5+ae" 5. (3.2)

Indeed “before” (#<€0) the moving soliton comes near the
origin, i.e., e"»1 near x~0, u = (3%/dx*)In F=(3%/
0x?) (1 + ae®). “After” (t>0) its departure (e”€1 near
x~0), u=(3%/dx*)(1 + €°). This corresponds to a shift of
the peak of the soliton Ax = In a/p.
Expression (3.2) is indeed a solution provided that

Q4+ 2k—p)  3kZP-3kp+p’

O Q42k+p)? 3Kk1+3kp+p?
so (3.1) is indeed a good candidate for a one-static-soliton
solution. One should further check that not only a single
moving soliton but any number of them can cross it without
any deformation. Analogously one can define a two-static
(and in fact N-static ) soliton solution by its interaction with
moving solitons. More precisely, an

F=1+eé 4+ P55 (&i=px+gq) (3.4)
will be called a two-static soliton solution, if, upon interact-
ing with moving solitons, it recovers its form up to shifting

the £,’s. Suppose that a one-moving plus two-static solution
exists and has the form

(3.3)

F=1 +e§l+e§2+ﬂe§1+§z

+e7(1 + € + aet: + peb T 42). (3.5)

In order for the moving soliton to cross the two-static solu-
tion (3.4) with only shifts we must ensure that the form
(3.4) be recovered from the term in parentheses by absorb-
ing a,, a, in the definition of the ¢;’s. This gives y = a,a,5.
By taking the limit {,— — oo (resp. {;— — o0 ) one can con-
vince oneself that for (3.5) to be a solution, a, (resp. a,)
must be of the form (3.3) with p = p, (resp. p,). We find
that (3.5) is indeed a solution provided that

4

_ P —3pip: + 4pipi — 3p1 P2 + P
Pt +3pip + 4103 + 30103 + 13

Thus (3.4) is a two-static soliton solution for this choice of

B.

(3.6)

Let us now turn to the study of the static solitons of the
DSW equation. The first step is to find the moving soliton.
Following the usual approach for equations with this bilin-
ear structure we look for

f=1+¢€" g=A1e" withy=kx+ Q¢ 3.7

We get thus 22002 +A4%*=0 and
(2Q)[(2k)* +2(2Q)] = 0. The second equation leads to
the dispersion relation Q(2k 3 + ) = 0 and we choose the
moving (#0) solutionQ = — 2k 3. HenceAd 2 = 16k *.The
simplest choice for a static soliton is

f=1+¢* with {=px+gq, g=0. (3.8)
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This would have been a soliton if there existed a solution of
the form

f=1+6"+e* +ae” 5 4 b+ %,
g =Ae"(1 + ce*).

(3.9)

By asymptotic considerations, similar to those that followed
Eq. (3.2), we should have b = ¢*>. However, one can check
that (3.9) is not a solution for any choice of @ and ¢ as func-
tions of p and k. Therefore we are led to try a more general
form for a static solution

f= l +Ae§+e2§, g=0’ (3.10)
where A must be independent of p. This will be a soliton
solution if there exists a solution of the form

F=14A4e* + ¥ + 7(1 + ade’ + Pe*),

g =Ae"(1 + yAét + 6e*),
where a,B,7,0 are functions of p and k. Asymptotic consid-
erations show that = a? 8 = a. We find that (3.11) is
indeed a solution provided

A =4,

a= (3k*—3kp +p*)/(3k* + 3kp + p?),

(3.11)

and (3.12)
¥ = (6k*—p*)/2(3k? + 3kp + p?).

Thus the one-static soliton solution for DSW is
f=1+4ef* 4 %%, g=0. (3.13)

In order to find a two-static soliton solution one must con-
sider as in the case of Eq. (2.30) the interaction of two static
with one moving soliton. This is an extremely tedious task.
However a different approach allows us to obtain a general
form for an N-static plus M-moving soliton solution. Indeed,
going back to the KP hierarchy, we know’ that the general 7
function solution for an arbitrary number N of solitons has
the form

o= ; (Ha.y)exv(f,m),
xcloN1Y i) iex
ijex

where the first sum is taken over all subsets X of [0,N] (in-
cluding the empty set) with 7, given by (2.9) and a; by
(2.8). In order for 7, to be a solution of DSW, it must, in
addition, satisfy the reduction conditions (2.19) and (2.20).
For all i we must have p¢ = g°. This will ensure both (2.20)
and 7,.6,(x)=7,(x). We must still implement
7,(x) =7, _,(X). For this we require N to be even. [In-
deed, if N = 1, we cannot implement this condition. Write
To=1+¢e"%. Then 7,=1+ (p,/gq,)e™™ and thus
(p,/q,)e"® =e" ™ or p,/q, = &*" with

(3.14)

7= (P — 1%

Thisimplies ' = 0 and thus p, = g,. But then 7 = Oand 7is
a mere constant. ]
Let us now look at the N = 2 case. Indeed, if we choose

P2= —4qy ¢2= —p;, then p3"—gi"= — (pI" —gi")
while p"*'—g@"*'= 4 p¥*t' —¢gZ"*")y and thus
7,(x) — &, = 1,(x) — &,. Therefore starting from
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To=1+ eM®)  oMlx) 4 a,ze”'("’ +mlx)
we find
To(x) =1 + e"ll(x) +/‘Le7/,(i) +012/1e1].(i)+7].(x)
(with A = €% %)

and

(%) =1+ (&-) en™ 4 4 (&) e®

q: q,
" a”@) (&) em T, (3.15)
49,/ \q;
But p,/q, = q,/p,- So going from x to X, we get
(X)) =1+4 (ﬂ) e 4 (ﬂ)en.(i)
P UJ
+a,2/1e”"")+"-("‘), (3.16)

This is identical to 7y(x) for A = p,/q,. In a similar way, in
order to have 7_,(x) = 7,(X) we can use the same form as
(3.15) for 7_, but with A = (p,/q,)*. (This form is immedi-
ately obtained from

7'_1 - 1 + (-q-—l) eﬂ' + (12_) en2 + alz (ﬂ) (gl) eﬂl + 7,
D1 D> P17/ \DP2

by redefining 8, and §,.) The expressions of the form (3.15)
for 7, and 7_, coming from the two-soliton solution of the
hierarchy depend now on only one couple (p,,q,) with
P} = ¢%. They are in fact one-soliton solutions for Eq. (2.30)
and DSW, respectively.

Indeed let us compute 7; (i = 0, — 1) and its derivatives
on the line x,=x,= -~=0 as a function of
X' = (X1X35000 X3y 4 15+ ). We find

f=Tilsexmmo =14+ (1 +2)e™ + a,,6>">,

_ ar,

=P —) 1 =)™, (317

axz X, =x,=0
with

ﬂ(x') — z (P2n+1 _q2"+1)x2n+1

and

=P =) _ P+
Py —42) (¢ —p2) 4pq

and where A = p/q for r,and A = (p/q)> for 7_,. Note that
for 7o, since 1 +A = (p+q)/q, Aa,, = (p + q)*/4¢%, f is
indeed the perfect square of (1 + [ (p + ¢)/2g]e"™’) as ex-
pected.

For 7_,, we start from p® = ¢°. There are two subcases:
W) pP=¢,ie,A=land (i) p’ = —¢*,ie, A= — 1.In
subcase (i) we have g = 0 and indeed Q = p* — ¢* = 0. This
contains the static soliton branch. However, the case p = ¢
leadston = 0, i.e, f= 1 (¥ = 0), and is not interesting. The
interesting case is  pP+pg+¢=0. There
F=1+42e"" 4 g, with a,,= (p®+2pq + ¢*)/
4pq = }. Redefining 7 by " = 1 — In 2, we recover the form
(3.16) with 4 = 4. In subcase (ii) we must also eliminate
Pp+qg=0as it leads to g=0and f=1 (A= —1 and
a,,=0). Restricting to p>—¢gp+4¢°=0 we have
[=1—a,"™, g =2(p* — g¥)e™™", with

ap
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@ = (" +2pq +q°)/4pg =}
Redefining 2%’ =29 —In(3) —im, we find f=1+ €7,
g =pe", with u> = —18(p*> — ¢*)>. On the other hand,
k=p—gq, Q=p*—¢’, and we can easily check that
Q + 2k*=0and u®> = 16k * as expected. We thus recover
the moving-soliton solution of the DSW equation.

Following the same procedure, starting from a four-soli-
ton 7 function with

P=—¢qi» @=—p, P}=4q},

e = (pl/ql)aem(i),

Ps= —d3 Q4= —ps P3=4¢5,
e *) — (ps /q3)aena(i)’

witha = 1for r,and a = 3 for 7_,, we can recover the two-
soliton solution, with a soliton being static if the correspond-
ing p and g satisfy p®> = ¢° and moving if p> = — ¢°.

One can check that this general form coincides with the
two-soliton solutions for either (2.27) and (2.28) or DSW
that were solutions observed directly. In a similar way, start-
ing from a 2(N, 4+ N,)-soliton 7 function we can construct a
N,-static plus NV,-moving soliton solution for both equations.

At this point a remark is in order. This construction tells
us that an N,-static plus N,-moving soliton solution exists
for Eqs. (2.27) and (2.28) as a polynomial in exponentials
for fand g. For small N = N, + N, we have checked that this
polynomial is indeed a perfect square and that F as a solution
of (2.30) is a polynomial. In fact, this is a consequence of Eq.
(6.7) of Ref. 7. Although Ito’s equation (I1.30) does not
appear, as it stands, in the BKP hierarchy of Ref. 7, it can be
found in Ref. 9 and corresponds to a (BKF), reduction.

IV. PAINLEVE ANALYSIS OF THE DSW EQUATION

In this section, we will study the behavior of the solu-
tions of the DSW equation in the neighborhood of a singular-
ity (“Painlevé analysis”) but we will do it in an original way:
we will work directly on the bilinear form. We start from

DD, f-f+g =0, DID,f-f—pDig-g=0. (4.1)

The DSW equation corresponds to p=3 and ¢ =g/f,
u = (d /dx)In f. In fact we do not look for a singular behav-
ior of fand g, which we expect to be entire functions, but
rather for zeros of fof arbitrary multiplicity n (which induce
a simple pole of residue n for v) at places where g is either
nonzero or has a zero of lower multiplicity m leading to poles
of multiplicity n (or n — m) for ¢. We will insist that fand g
are indeed entire functions and that the free integration con-
stants that enter in fand g do not enter at noninteger powers
or induce logarithms, just as one does in the usual Painlevé
analysis near poles.

Let us thus assume that on a manifold x — @(#) =0, f
has a zero of nonzero multiplicity » and g a zero of multiplic-
ity m (possibly zero):

F=x—@@®)[ao(t) +a,()x —@(t) + )],
g=(x—@@®)"[bo(2) + - ].

(4.2)
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The first equation leads (at leading order) to
—@(0)ay (H2n(n — 1) —2°)[x — (1) ] *
+b3 () [x—@@)]*"=0. (4.3)
Since we exclude n = 0, which is a regular point of f, we must
have 2m =2n —2, m =n — 1, and b3 (z) = 2n@(t)ai(r).
The second equation gives
—@(Nag(H[2n(n— 1) (n —2)(n—3)
—8n2(n—1)(n—2) +6n*(n—1)2] —pbi (1)
X[2(n—=1)(n—=2) —=2(n* = 1)] =0. (4.4)
We eliminate b,(¢) from (4.3) ar}d (4.4), and taking into
account the fact that a3 (#) #0, @(t)#0 (since @ is arbi-
trary), and n#0, we obtain (2p + 6)(n — 1) = 0. The case
p = — 3isspecial. In that case n may be arbitrary and fand
g need not be entire functions. Still this case is integrable.

Indeed, it we write f=¢"/? and g = ¢ * ™/, we obtain
from the first equation

W,+ef=0, (4.5)
hence p = In W, + im. The second equation yields

W +3W Wy +3(We +pi)e? =0, (4.6)
which simplifies to ( —e®),, + 3p,,e? =0o0r

20 —px =0. (4.7)

Integrating (4.7) we obtain p = 24(r) — 2 In[x — xo(#) ].
Thus

p=g/f=e?=e'""/[x —x,(1)], (4.8)

which has simple poles and sO does
v= (d/dx)Inf= W_/2. The residues of these poles, how-
ever, are arbitrary (in fact arbitrary functions of ¢), which
shows that fand g have zeros of arbitrary order and are not
the appropriate variables in which to perform the Painlevé
analysis. For all other values of p, including p = 3, which is
the case for DSW, we must take n = 1 and m = 0 (g is regu-
lar).

We must now find the places where the free integration
constants enter in the expansion: the “resonances.” We start
from

f=1x—@®)][as(t) +a,.()x—@®)],
8 =bo(t) + b, (){x — @(1)),
with b2 (1) = — 2¢(t)a2 (). We thus obtain

—@)ay(Da, () [2(r+ )r— (r+ 1)]
+ 2by()b, (2) =0,
— @(Day(t)a, (1) [2(r+ Dr(r — 1)(r —2)
—8(r+ )r(r — )] —pbo(1)b, () [2r(r — 1)] =0.

This is a system of two equations for the two unknowns a, (¢)
and b, (¢), which determines both functions unless the deter-
minant vanishes:

(r+1)(r—-2) 1

rr+D)r—1)(r—6) —pr(r—1) =0.
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Three roots are independent of p, namely — 1 [freedom of
@(1)], 0 [freedom of @,(¢)], and + 1. The fourth root is
givenbyr= (2p + 6)/(p + 1). Forp = 3we haver = 3. In
general, r will not be an integer unless p = (6 — 1) /(] — 2)
with r = / an integer. The next step will be, for each value of
integer » = /, to check whether the resonance condition is
satisfied or whether a logarithm enters on the expansion.

Note that / = 2 corresponds to an infinite value of p and
must be rejected. For /=1 wegetp= —5;r= +1isa
double root of the determinant but the matrix is still of rank
1. The two free constants are not a; and b, but rather ¢, and a
logarithmic term in f with a free coefficient @] (which in-
duces a logarithmic term b | on g) given by

biby= — 2a;a0¢, bob, = ¢ao(a; — 2a,).

The case 7 = 0 corresponds to p = — 3, which we know to
be integrable, but the Painlevé property, true in terms of v
and ¢, is violated by fand g. For negative values of 7, there
can be no more checks, but we get a nongeneric (i.e., with
only three free functions of time) expansion. We would not
in such a case expect an integrable behavior.

For ra positive integer, larger or equal to 3, a compatibi-
lity condition has to be checked. It is indeed satisfied for
p = 3, which is the DSW equation. Thus this equation satis-
fies the Painlevé criterion as expected from its known inte-
grable character. For r = 4 (p = 1) we find that the compa-
tibility condition is nor satisfied: logarithms enter of that
order, the equation does not have the Painlevé property and
is presumably not integrable. Beyond these values calcula-
tions become increasingly tedious but we do not expect any
new Painlevé case to arise.

V.SUMMARY AND CONCLUSION

In this paper, we have examined an integrable equation
first proposed by Drinfel’d, Sokolov, and Wilson, which can
be obtained as a reduction of the KP hierarchy, as described
by Jimbo and Miwa. This equation presents a most interest-
ing feature: it possesses solitons that are static. Namely,
among the time-independent solutions of this equation there
exists a particular class that behave as solitons: after inter-
acting with moving solitons they are simply shifted and in-
duce just phase shifts on the moving waves. This is the reason
why we have dubbed these solutions static solitons. The bi-
linear formalism was used for the explicit construction of
such solutions and a general method of computation of the
N-static-soliton solutions was presented based on the reduc-
tion of the 7 function that Jimbo and Miwa have obtained for
the KP hierarchy.

We have also examined the DSW equations from the
point of view of the Painlevé analysis. A novel and interest-
ing approach in this domain was the implementation of the
singularity analysis directly on the bilinear form of the equa-
tions. Finally, although the main bulk of the paper was de-
voted to the study of the DSW equation, we also have exam-
ined an equation that was already studied under a different
form, by Ito, and that we have shown to possess static soliton
solutions also.

Hirota, Grammaticos, and Ramani 1504



'R. Hirota and J. Satsuma, Phys. Lett. A 85, 407 (1981). V. G. Drinfel’d and V. V. Sokolov, Sov. Math. Dokl. 23, 457 (1981).
ZR. Hirota and J. Satsuma, J. Phys. Soc. Jpn. 51, 3390 (1982). M. Jimbo and T. Miwa, Publ. RIMS, Kyoto Univ. 19, 943 (1983).

3M. Sato and Y. Sato, RIMS Kékytroku 388, 183 (1980); 414, 181 (1981). M. Ito, J. Phys. Soc. Jpn. 49, 771 (1980).
“E. Date, M. Kashiwara, and T. Miwa, J. Phys. Soc. Jpn. 50, 3806, 3813 °E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, Publ. RIMS, Kyoto
(1981). Univ. 18, 1077 (1982).

5G. Wilson, Phys. Lett. A 89, 332 (1982).

1505 J. Math. Phys., Vol. 27, No. 6, June 1986 Hirota, Grammaticos, and Ramani 1505



Generalized Burgers equations and Euler-Painlevé transcendents. |

P. L. Sachdev, K. R.C. Nair, and V. G. Tikekar
Department of Applied Mathematics, Indian Institute of Science, Bangalore-560012, India

(Received 3 September 1985; accepted for publication 30 January 1986)

Initial-value problems for the generalized Burgers equation (GBE) u, + u®u, + Au®

= (6/2)u,, are discussed for the single hump type of initial data—both continuous and
discontinuous. The numerical solution is carried to the self-similar “intermediate asymptotic”
regime when the solution is given analytically by the self-similar form. The nonlinear
(transformed) ordinary differential equations (ODE’s) describing the self-similar form are a
generalization of a class discussed by Euler and Painlevé and quoted by Kamke. These ODE’s are
new, and it is postulated that they characterize GBE’s in the same manner as the Painlevé
equations categorize the Kortweg—de Vries (KdV) type. A connection problem, for some related
ODE'’s satisfying proper asymptotic conditions at x = + «, is solved. The range of amplitude
parameter is found for which the solution of the connection problem exists. The other solutions of
the above GBE, which display several interesting features such as peaking, breaking, and a long
shelf on the left for negative values of the damping coefficient A, are also discussed. The results are

compared with those holding for the modified KdV equation with damping.

I. INTRODUCTION

Two model equations have pervaded mathematical
physics extensively. They are the Burgers equation

u, +uu, = (8/2)u,, (1.1)
and the Korteweg—de Vries (KdV) equation
u, +ouu, =u,,,. (1.2)

While the former describes a balance between nonlinear con-
vection and (small) viscous diffusion, the latter represents
the effect on nonlinear convection of the (simplest form of)
linear dispersion. In spite of the fact that the two equations
epitomize quite distinct physical phenomena, their math-
ematical (and to some extent physical) structures lend
themselves to several analogies. For example, while the
Hopf-Cole transformation ¥ = — §(log ¢), exactly linear-
izes (1.1) into the heat equation, its “‘straightforward gener-
alization” ou = 12(log F),, further “nonlinearizes” (1.2)
to a uniformly second degree partial differential equation
(PDE) of order 4. Nevertheless, this transformation helps
the analysis of the soliton interaction in a simple manner.'~
Recently, Whitham* has given a representation of periodic
waves as a sum of solitons for (1.2), which is analogous to an
earlier one due to Parker’ for the Burgers equation (1.1) in
terms of a sum of shocks. The Burgers equation often moti-
vated the analysis for the equation of the KdV type. The
exception is the inverse scattering transform (IST), which
reduces the problems for the KdV-type equations to the so-
lution of linear integral equations of Gel’fand-Levitan type.
Generalized Burgers equations (GBE’s), such as

u, + uPu, + Au = (6/2)u,, (1.3)
(where a and B are real), that extend the class (1.1) and
that occur in many applications (see discussion below),
however, do not seem to be amenable to the IST.

There is another strand that runs through the class of
KdV-type equations admitting IST. According to Ablowitz
et al.b all these equations, either directly or through some
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simple transformations, admit similarity solutions governed
by one of the six Painlevé equations. These nonlinear second-
order differential equations belong to the class of 50 equa-
tions, classified by Painlevé and his contemporaries, whose
only movable singularities are poles.” The solutions of only
six of these equations are not expressible generally in terms
of elliptic functions or other special functions—hence the
name Painlevé transcendents. These, thus, in some sense,
characterize the nonlinear dispersive model equations of the
KdV type. It may be pointed out that the KdV type of equa-
tions can be interpreted as Hamiltonian systems,® while the
Burgers type of equations are not Hamiltonian systems. In-
deed the Painlevé transcendents reflect the complete integra-
bility of a Hamiltonian system of KdV equations. It will be
shown in a subsequent publication® that the GBE (1.3) does
not enjoy the Painlevé property; this work will also deal with
possible Lie-Backlund symmetries of (1.3).
It appears that GBE’s such as (1.3) and

u, + uu, +ju/2t) = (6/2)u,, (1.4)

(where j = 0,1,2 for plane, cylindrical, and spherical sym-
metry) (which we shall discuss in detail in Part II) are ex-
pressible through similarity transformation (see Sec. III) to

nonlinear ordinary differential equations (ODE’s) of the
form

W@y + 0w +80)Y + by +¢=0, (15)

whose solutions we refer to as Euler—Painlevé transcendents.
Here f(x) and g(x) are (sufficiently smooth) arbitrary
functions and a, b, and ¢ are real constants. A special case of
(1.5) with 6 =0 and ¢ =0 was considered by Euler and
Painlevé® and is, in fact, exactly linearizable by the simple
transformation
y= vl/ (a+ 1)
to

v+ ' + (a+ 1)gv=0. (1.6)
However, for the GBE’s (and indeed even for the Burgers
equation), b #0, and ¢ may or may not be equal to zero. For
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the Burgers equations, ¢=0, b= —2*% a= —2,
f(x) = 2x, g(x) = — 2, and the solution is expressible in
terms of a complementary error function and an exponential
function. We postulate that the generalized Euler-Painlevé
equation (GEPE) (1.5) represent GBE’s and generally do
not have solutions expressible in terms of known functions.
The analogy with the Painlevé equations for the KdV type is
obvious; hence the name Euler—Painlevé transcendents for
the solutions of (1.5). We hasten to add that these equations
seem to be analytically much nicer than the Painlevé trans-
cendents and, in the physically interesting cases, do not ex-
hibit any singularities.

The inviscid form of (1.3), with more general convec-
tive and damping terms, namely

u, +gwu, +Ah(u) =0,
A>0, g,(¥)>0, h,(u)>0, foru>0, (1.7

has been considered by Murray.'® It includes model equa-
tions describing stress wave propagation in a nonlinear Max-
well rod with damping, ion exchange in fixed columns, and a
realistic model equation, which has been suggested to ex-
plain the Gunn effect in semiconductors. In general, A >0
and the term Ak (u) > O is dissipative, but there are interest-
ing cases for which A can be negative.!' Murray has found
the asymptotic solution of (1.7) for the case A(u) = O(u®)
under the assumption that 0 < u<1. Choosing an initial sin-
gle hump profile (which may be continuous or discontin-
uous at the front), he arrived at the following asymptotic
behavior of the solution, which depends only on @ and is
independent of the form of g(u) except for the requirement
that g, (u) >0.

(i) If 0 < < 1, the solution is unique under certain con-
ditions and decays in a finite time and a finite distance.

(ii) If @ = 1, it decays in a finite distance but in an infi-
nite time exponentially.

(i) If 1 <a<3, it decays in an infinite distance and
infinite time like O(¢ — (e~ Dy,

(iv) If @ > 3, it decays like O(z ~1/2).

Lardner and Arya'? have studied matched asymptotic
solutions of a special case of (1.3), namely

u, + uu, +Au=(6/2)u,,, (1.8)

under the constraint that the shock is thin. They have also
considered an extended form of (1.8) wherein the coefficient
of u, is pu + yu® + y,¢(2); pu, 7, and y, being constants.
These model equations arise when considering the motions
of continuous medium for which the stress—strain relation
contains a large linear term proportional to the strain, a
small term that is quadratic (and/or cubic) in the strain and
a small dissipative term proportional to the strain rate. The
Au termin (1.8) would arise in such a system if the equation
of motion includes a small viscous damping term propor-
tional to the velocity.!?

There are several purposes to this paper.'* We study an
initial value problem for (1.3) for different values of @ and
B, both when A is positive and when it is negative. The pur-
pose is to discover for what values of @ and B the solutions,
for a class of the single hump form of initial conditions, are
asymptotic to the (terminal) similarity solution. The initial
conditions are taken to be either continuous or discontin-
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uous at the front and vanishing at + « in a “reasonable”
manner. While for the former, the usual implicit finite differ-
ence scheme proves quite adequate, for the latter we have to
resort to the pseudospectral method (see Sec. ITI) to tackle
in a precise manner the initial shock discontinuity and its
embryonic evolution. However, once the smooth Taylor
shock has formed, we make a switch to the Douglas-Jones'®
implicit scheme, which now delivers an accurate solution
over the long duration of the evolution of the profile in a
relatively shorter computational time. It was clearly estab-
lished by Sachdev and Seebass'® that the Douglas—Jones im-
plicit predictor—corrector method for solving nonlinear
parabolic equations of the Burgers type is quite adequate. In
particular, the evolution of a smooth initial N wave was con-
sidered. Ames'” has given numerical solution of the initial
boundary value problem for the Burgers equation (1.1) with
the conditions u(0,t) =u(1,t) =0, u(x,0) =sinmx,
0<x <1, 0<t<T, and has shown that the Douglas-Jones
implicit scheme gives excellent agreement with the exact so-
lution. (See also Mitchell and Griffiths,'® p. 97.) We find
that the similarity form emerges if 1 <a<3 and is governed
by a special case of GEPE (1.5). This range of a coincides
with that of Murray’s case (iii), which was identified by
using the method of characteristics. We study in detail the
GEPE’s—their asymptotic behavior, series, and numerical
solutions. We discover, in particular, when the single hump
type of solutions of (1.3) exist [see Eq. (2.7)], tending to
zero as x— + oo . This may be said to constitute a connection
problem.'® This may also be compared with the study of
Miles,2® who has treated Painlevé transcendents in a similar
manner. We follow the (numerical) solutions of the initial
value problem for the PDE (1.3) in the similarity range of
parameters until they emerge as similarity solutions or inter-
mediate asymptotics, as they are often referred to in the Sovi-
et literature. To quote Barenblatt and Zeldovich,?! “these
are solutions which do not merely represent specific exam-
ples but describe the intermediate asymptotic behavior of
solutions of wider classes of initial, boundary and mixed
problems, that is, they describe the behavior of these solu-
tions away from the boundaries of the regions of indepen-
dent variables or alternatively, in the region where in a sense
the solution is no longer dependent on the details of the ini-
tial and/or boundary conditions but the system is still far
from being in a state of equilibrium.” We thus identify the
solutions of the GEPE’s (with suitable simple transforma-
tions) with universal “similarity functions” for (1.3). We
also study the non-self-similar cases for <1 and a > 3 and
compare them with the asymptotic solutions of Murray, al-
lowing, of course, for the absence of viscous effects and other
assumptions in his study.

We note that a similar study for the modified KdV equa-
tion

Ut =,u'UUx +ﬂUxxx ‘/iU:
U(x,0) = f(x),
U(x,t)—>0 as

(1.9)
|x| >0, forallt< oo,

where 1 and B are positive constants, and A a positive or
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negative constant, was carried out by Leibovich and Ran-
dall.??

The scheme of this paper is as follows. Section II ana-
lyzes the self-similar solutions. Section III deals with the
numerical solution of (1.3). Section IV connects the numeri-
cal solutions of (1.3) with the self-similar ones and demon-
strates their self-similar character. Section V discusses the
non-self-similar solutions. Finally, Sec. VI contains the con-
clusions of the present study.

ll. ANALYSIS OF SELF-SIMILAR SOLUTION—EULER-
PAINLEVE TRANSCENDENTS

With single hump type initial conditions (see Sec. III),
we expect the solutions to have self-similar form analogous
to the one for the Burgers equation (1.1), namely"**

u=8/0"H{{2m) "%/ (e® — 1) Jexp(?)
+ (7/2)"2 exp(n*)erfc n} !
= (8/)"*[1/Hg ()],

(2.1)
(2.2)
where

7 =x/(28t)"2

Whitham has identified this solution as one arising from the
singular initial condition  (x,0) = ¢, + 48(x). A change of
variables ¥ = u, + I, x = uyt + X leaves (1.1) invariant and
permits writing the initial condition as %#(X,0) = A5(X).
One may therefore assume the initial condition for (2.1) as
u = A5(x), where A is the area under the profile. Most self-
similar solutions arise directly from singular initial condi-
tions. The solution (2.1) represents a single pulse whose
length increases with time, but whose Reynolds number
Re L

6J_«
which is the ratio of the area under the profile to viscous
diffusion, is constant. This can be easily checked either by
using the solution (2.1) or integrating (1.1) with respect to
x from — o to + oo and assuming that # and u, vanish at
X = + oo. Hopf * refers to R as an integral of (1.1). The
solution (2.1) motivates our study for (1.3). We seek a solu-
tion of the latter in the form

u=1t%f[(28)"""x], (2.4)

where a, and b, are real constants. Substitution of (2.4) into
(1.3) shows that, for the similarity solution to exist, a, = 1/
(1 —a), b, = — }sothat (2.4) becomes

u =t1/(1——a)f‘(1,)’

u dx, 2.3)

7= x(260) 112, 2.5)
provided

B=(a—1)/2. 2.6)
Then, (1.3) reduces to
Sr+2f = [4/A—-a)]f

— 4(28)"V2f@-D2f _gpfe=0, @7

where a prime denotes differentiation with respect to 7. The
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form (2.5) shows that the solution decays explicitly with
time if & > 1 and grows if @ < 1. The form of (2.1) suggests
that the denominator function Hy (%) may admit general-
ization so that we transform (2.7) in terms of the “recipro-
cal” function

H=§f0-2n (2.8)

(This transformation may be readily guessed so as to remove
fractional powers of f.) Therefore, H as a function of 7 is
governed by

HH" —2(1 +a)H"*+29HH’
—2H? 2 2, =0,

where
a, =33 -a)/(a—-1), A, =16(1—a).

This is a special case of (1.5) with

(2.9)

a= —-2(1+4+a)=(~0+a)/(l-a),

S =29, gln)= -2,
b= —2% ¢c= —24,

We note that the function H g (77) for the Burgers equation,
defined by (2.1), is a special case of (2.9) with a, =0,
A, =O0corresponding toa = 3,4 = 0in (1.3). Itis governed
by

HH" —2H"? 4+ 29HH' —2H* - 2>’H’ =0, (2.10)
with the solution
Hy = [2m)'"%/(e® — )] exp(7?)
+ (7/2)Y2 exp(9*)erfc 7, (2.11)
where the erfc has the expansion
erfcz=1—erfz
& (222)k
=1- e * —_—,
TT]/2 kgo 13'-(2k +1)
|z| < o0. (2.12)

Even (2.10) is more general than the Euler-Painlevé equa-
tion

W' +ay? + fx)yy +g(x)y* =0, (2.13)

sinceit has the additional term — 22°H’. Comparing (2.10)
with (2.9), we find that the form (2.9) for the GBE (1.3)
has different numerical coefficients and an additional con-
stant term 24,. But these “simple” changes for nonlinear
DE’s make a drastic difference to the solution. Indeed, it
does not seem possible to express the solution of (2.9) in
terms of known functions analogous to (2.11). The series
expansion for the solution (2.11) suggests that we may seek
a similar one for (2.9) for the case of decaying solutions with
a > 1, namely

H= S a, 7" (2.14)
n=0
Substitution of (2.14) into (2.9) gives
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a,= (1/ap){(a2 +2"%a, +a?) + 1, + a,al},
ay = (1/3ap){(asa, + 2*%a, + 3a,a,) + 4a,a,a,},

2a, 2a;

a p——q
T e+ D(k+2)  (k+2)a,
k r ]
(k4 1=D(k+2-10)
Xlgl{ 2 ¢
+a,-ak_,-—(k+1_i)ai—lak+1—i]’
k=123,...

Thus, we have a two parameter a,,a, family of series solu-
tions. The convergence of this series by direct computation
seems difficult to establish. For the Burgers equation (1.1),
for which @ = 3, A =0, the function Hg given by (2.11)
follows from (2.14) if @, = — 2'/2. The free parameter a,
gives a single parameter family of solutions and corresponds
to the (constant) value of the Reynolds number, which fixes
a definite (single hump) profile. For the GEPE (2.9), it does
not seem possible to fix a priori the range of the parameters g,
and a, such that the series (2.14) converges over
— o0 <7 < 0. We shall first find the asymptotic solution of
the corresponding fequation (2.7) for large 7 and then nu-
merically integrate it from 77— o to 7— — oo andisolate the
family of solutions /" that vanish at — oc. It is easily checked
that the linearized form of (2.7), namely

f"+2f - [4/(1 —a)|f=0, (2.16)
has the solution
f=Aexp(—n")H, ()
~A exp( —7%) (29)**,
as Nt + oo, (2.17)
and
f~0(m~ 7Y, as 7l — oo, (2.18)

where
v=2a,=CB—-a)/(a—-1),

H,, is the Hermite function of order v, and 4 is the amplitude
parameter. Thus, the linear solution decays exponentially as
71— + o, and algebraically as 7— — «, provided
20, + 1>0, thatisa > 1.

We now pose the boundary value or connection problem
for (2.7), namely

ST+ 2f -4/ —-a)1f

_4(25)—1/2f(a~1)/2f'l_4;Lfa=0’ (2.19)
f~Aexp( —7*)H, () ~A exp( — 7°) (27)**
(71 ), (2.20a)
/=0 (1 — ), (2.20b)
and
Ifl<o, —o0<<ow. (2.21)

Before solving (2.19)-(2.21) we note two special exact
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(21/2 +a,a, +a|) +

2
(k + D) (k + 2)a

Orea i+ A +a))+ D) k+1—0Na; yai,,_;

(2.15)

solutions of (2.19). The first is the constant solution
f=lAla=DVI =2 =f, (2.22)
say. It is easy to check that f,, is also the maximum value of f
that the maxima of the single hump solution can attain. This
follows from (2.19) if we note that, at the maximum, f' =0,
f" <0, etc.
The second exact solution is

2/(1 —a)
f= [EA:Z)_n)Z/“:m?i;);o, (2.23)
where
A, =2/ (@ —1)/(a+1))
X [(1448(1 + )2 + 1], (2.24)
A_ = (2/8)Y(@—1)/(a+ 1))
X [(1+A8(1 + a))V2 —1]. (2.25)

This solution is singular tending to infinity as —0fora > 1.
The corresponding solution for (2.9) is
A.8"%, >0 (2.26)
H = [ + ’ )
M= 1_4_s2, p<o. (2.27)
The solution (2.26) can be embedded in the two parameter

fe
A 1 62300
P A
L exact (constanT) gLeM V4 ‘
80LUTION |
Gooo2:

] ‘\
| s
/ 40099- |

"
Lunok
C_‘:mGU‘-“R) il
wel
300@'

i SQOO

-3 -2 0.0 '; 4 ?
FIG. 1. Solution of Eq. (2.19) for various values of 4 and for a = 1.5,
A = 1. Constant solution (2.22) and singular solution (2.23) are also
shown.
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-25
family of solutions
H=by+ Z an~’, (2.28)
i=0
where
a,= — (1/2b,) [(1 + a,)b2 + 2% + 4],
a, = —aya,/b,, (2.29)

a; = (1/4by) [4asa, + (2a, — 2"/2 — 3b, — 2a,by)a, .

This singular solution may be compared with that of the
Thomas-Fermi equation.”*

We integrated (2.19) numerically from 5 ~4, choosing
a certain value of 4 and initial conditions (2.20a) and pro-

ceeded towards negative # until the solution became essen-
tially zero. Figures (1-4) show the solution for a set of val-
ues of @ = 1.5,2,2.5,3 in the similarity range of a, and the
corresponding value of = (a — 1)/2 =0.25, 0.5, 0.75,
and 1, respectively. For each such pair (a, ), there is a
value of 4 = A4, for which the solution does not decrease
to zero as 57— — oo but, instead, approaches the (exact)
constant solution (2.22) asymptotically. For 4 > A4,.,,, the
integral curves grow monotonically to infinity as 7— — .
(Compare again with the solution of the Thomas-Fermi
equation, Bender and Orzag,”® Fig. 4.10.) Table I, gives the
values of A, ,, for various (&, 3) pairs. Figures (1-4) also
include the singular solutions (2.23)~(2.25). From these

fen
1971280 A ='onoooo
o : —
LExACT(cousTANT)SOLunoH
°61]  EXACT (SINGBLAR) SOLUTION
FIG. 3. Same as in Fig. 1 fora =2.5.
0-4-
\Oooooo ooo
N\
02
// 1000
50002
Y 4
-3 [« XX ? 4
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-2.0

values of 4 lying between 0 and A,,, and the numerical
solution, we calculated the first two coefficients ¢, and a, of
the series (2.14). They are the values of H and its derivative
at 7 = 0. The function H is related to f by (2.8). Table II
contains the ranges of a, and a, while Fig. 5 shows a, vs a,,
for various (a, B) pairs. With ¢,and a, thus determined, the
series (2.14) was summed up and compared with the (ex-
act) numerical solution. The series converged up to some
value of 7 and then its convergence slowed down. However,
analytic continuation of the series at a couple of 7 points
yielded an accurate solution in a large finite range of 7. The
agreement of this analytic solution with the numerical one
was found to be excellent, the discrepancy being O(10~7)
(see Table III).

It is clear from the asymptotic form (2.17) (and has
been numerically checked by us) that the solution of the
connection problem for (2.19) exists for all @ > 1. However,
the similarity solution (2.5) of (1.3) is significant only in the
range 1 < a<3, since as we shall see in Sec. III, the solutions
to initial value problem for (1.3) with suitable vanishing
initial conditions at infinity approach the self-similar form
asymptotically only in this range of a. The reason for this, as

we shall discuss later, is the physically unrealistic decay pre-
dicted by the similarity form (2.5) for @ > 3. Nevertheless,
Eq. (2.7) has the single hump solutions vanishing at
7 = + o for positive 4 and @ > 1. The left end limit of the
range 1 <a<3, namely, ¢ =1, gives 8 =0 according to
(2.6) and the solution (2.5) becomes invalid but the PDE
(1.3), in this case, is linear. We shall discuss its exact solu-

TABLE II. Coefficients a, and a, in the series (2.14) for the permissible
(similarity) range of the amplitude parameter 4 corresponding to different
values of ¢ and S and for A = 1, § = 0.01.

No. A ay a,
Na=3, B=1

1 0.0 0.0 0.0

2 2.095 1.2182 —1.1953
3 3.25 14233 —1.3305
4 1000.0 0.700 23 —0.36571
5 100 000.0 0.44529 —0.13077
6 2500 000.0 0.167 09 — 0.005 55
7 2953 000.0 0.141 414 0.0

(ii)a=25 B=075

1 0.0 0.0 0.0
TABLE L. Critical values of the amplitude parameter 4 and f,,,,, for differ- 2 500 000.0 0.490 37 —0.170 83
ent choices of @ and fin the similarity range for A = 1. [See Egs. (2.20) and 3 1000 000.0 0.241 86 —0.03108
(2.22).] 4 1800 000.0 0.134 62 —0.0022
5 1900 000.0 0.127 28 —0.000 85
Sfonn 6 1971 256.0 0.122 48 0.0
a 8 A Numerical Exact (ii)e=2, B=05
1 200 000.0 0.324 06 —0.070 34
1.5 0.25 62241.75 4.0 4.0 2 400 000.0 0.169 60 —0.013 36
2.0 0.5 780 840.6 1.0 1.0 3 600 000.0 0.122 76 —0.003 59
2.5 0.75 1971 256.0 0.763 143 0.763 143 4 720 000.0 0.106 51 — 0.000 95
3.0 1.0 2975 300.0 0.707 128 0.707 107 5 780 841.0 0.1 0.0
1511 J. Math. Phys., Vol. 27, No. 6, June 1986 Sachdev, Nair, and Tikekar 1511
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FIG. 5. a, versus a, for 0<A4
<Ap,y [see Eq. (2.14)].
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TABLE III. Comparison of series solution (2.14) and numerical solution of
(2.19)fora =3,8=1,4 = 1,and § = 0.01. The g, in (2.19) from i = O to
i=13 are 1.2182, — 1.1957, 0.987 36, — 0.603 57, 0.346 00, — 0.141 34,
0.05471, —0.00713, —0.00259, 0.00537, —0.00297, 0.00155,

— 0.000 44, 0.00 07. fep
Series solution Numerical solution
Ui H(p) Son Sop
—3.0 36.775 90 0.002 7192 0.002 7192
—2.5 29.151 79 0.003 4303 0.003 4303
— 20 19.825 09 0.005 0441 0.005 0441
—-15 10.269 01 0.009 7380 0.009 7380
— 1.0 4.541 242 0.022 0204 0.022 0204
- 0.5 2.165 305 0.046 1829 0.046 1829
0.0 1.218 223 0.082 0868 0.082 0867
0.5 0.809 7551 0.123 4941 0.123 4941
1.0 0.659 5272 0.151 6237 0.151 6237
1.5 0.854 7518 0.1169930 0.116 9928
2.0 2.926 066 0.034 1755 0.034 1754
2.5 24.990 6 0.004 0015 0.004 0015 Wi
3.0 387.044 0.000 2583 0.000 2584
35 9993.162 0.000 0100 0.000 0100
40 366 869.9 0.000 0003 0.000 0003 FIG. 6. Solution of Eq. (2.19) for various values of 4, and for @ = 4 and

A= —1
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FIG. 7. Same as in Fig. 6 fora =4,A = — 5.

tion in Sec. II1. This solution displays, in contrast, an expo-
nential decay.

When A is negative, the asymptotic form (2.5) is still
valid for a > 1, but the constant solution (2.22) ceases to
exist. This suggests that, in this case, there is probably no
upper limit 4., to the amplitude that the linear solution can
possess. Our numerical study of (2.19)-(2.21) for A <0 and
a > 1 confirms this conclusion (see Figs. 6-8). We shall see
in Sec. IV that these solutions do not constitute intermediate
asymptotics. We arrive at the conclusion that the solutions
to the problem (2.19)—(2.21) exist for @ > 1 and all A, but
these solutions are intermediate asymptotics only for
l<ag3and A>0.

We have carried out the numerical study for (2.19)
rather than for GEPE (2.9) because the asymptotic solu-
tions for the former decay as |7|—> 0, while for the latter
they would grow to infinity [see (2.8)]. Nevertheless, Eq.
(2.9) seems to be analytically more important and involves,
unlike (2.7), only integral powers of H and its derivatives.

fen)

FIG. 8. Same as in Fig. 6fora = 5,4 = — 5.

1513 J. Math. Phys., Vol. 27, No. 6, June 1986

@

-05 -'.4 Y -:2 -..| [o] -.l \‘2 3 '.Q O?X‘
u(x,JCi)r
[-2/]
(b)
o
L Y . a 2 Y F - : )(
-0% ~4 -3 -2 =1 00 1 T 3 408
Lty -2l
(© ©.\8e
[+1]
-0 o016 x

FIG. 9. Initial profiles for solving Eq. (1.3).

lll. PSEUDOSPECTRAL AND IMPLICIT DIFFERENCE
SCHEME FOR SOLVING EQ. (1.3)

We solve (1.3) subject to the initial conditions

0, X < Xg,
u(x,t;) = f(x), Xo<X<X), 3.1
0, xX>X,

where the function f(x) has the typical forms shown in Fig.
9. Unlike in the study of Murray, we do not restrict ourselves
to the case of 0 < f(x) < 1, nor the assumption |u| <1, which
he imposes to get some asymptotic results. As mentioned in
the Introduction, the Douglas-Jones implicit predictor—cor-

Sachdev, Nair, and Tikekar 1513



rector method for the nonlinear parabolic equation is quite
adequate to describe the evolution of initial smooth single
hump profiles. The difference analog of Eq. (1.3) is

2(Ax)?
u,-+1_j+1/2-—2(1+ 5(00) ) Uijrrn YUy 4010

2
- 2 (2,
F) Ar 7

n %"—u,f*,(u,.H, —u,_, ) (predictor), (3.2)
and
Ax 2(Ax)
(1 P uxﬂj+l/2)ui+l,j+1_2(l+ 5(A)) Lj+1
( + — lj+l/2)ui-1,j+1
Ax 2(Ax)?
(6 1/+1/2_1>ui+1,j+2<1_ m)uij
Ax
- (1 + 7uifsj+l/z)uiA1,j
2
+ 4/1(:5”) ui; 1,2 (corrector). (3.3)

Here, u; ; = u(iAx, jAt) and Ax and At are spatial and time
mesh sizes, respectively. This difference scheme has a trun-
cation error O(Ax? + At ?). Douglas and Jones have demon-
strated the convergence of the difference scheme (3.2) and
(3.3) for (1.3). However, this scheme is not adequate to
solve (1.3) with a sharp discontinuous initial profile; that is,
to discover the evolution of a shock wave through its “em
bryonic shock” region. The reason is that the accuracy of the
solution of (1.3) with an initial discontinuous profile by im-
plicit scheme (3.2) and (3.3) is severely affected. So we re-
sort to a numerical scheme referred to as pseudospec-
tral.?>-2® The essence of the pseudospectral method is that
the spatial derivatives u, ,u,, of the distribution u(x,?) are
computed very accurately by finite Fourier transformation.
The finite Fourier transform of u (x,t) is defined as
1 K—1

ulk.,t) = — Z u(lax,t)exp( — ik;IAx)

i

(3.4)

over the interval (0,27) of x. Here, Ax = 27/K, K denoting
the number of mesh points and the k; are the wave numbers
varying between O and K — 1. The inverse finite Fourier
transform is

u(lAx,t) = E u(k;,t)exp(ik;lI5x). (3.5)
ki <K /72
The spatial derivatives at the mesh points are
u,(lAx,t) = 2 ik;u(k;,t)exp(ik;IAx), (3.6)
|k <K /2
U (lAx,) = Y (k)u(k;,t)exp(ik;IAx). (3.7)

|kj| <K/2

The solution u(x,t + Ar) at the next time level is obtained
from the truncated Taylor series

u(x,t + At) = u(x,t) + Atu,

+ (At%/2Du, + (At?/3Nu,,, (3.8)

1514 J. Math. Phys., Vol. 27, No. 6, June 1986

TABLE IV. Evolution of the initial discontinuous profile under Burgers
equation to the self-similar form as evidenced by the convergence of the area
A, under the profile to a fixed constant value. Here, =1, 4 =0,
5 =0.001.

Time A,
1.0 0.013 067
1.01 0.013078
1.02 0.013 151
1.03 0.013 196
1.04 0.013 209
1.05 0.013 211
1.06 0.013 211
1.07 0.013 211
1.08 0.013 210
1.09 0.013 210
1.10 0.013 209
1.11 0.013 209
1.15 0.013 209
1.20 0.013 209
1.25 0.013 209
1.3 0.013 209

wherein the time derivatives ,, u,,, etc. are substituted from
Eq. (1.3) in terms of the spatial derivatives as

u, = —ubu, —Au*+ (8/2)u,,,
u, = —Puf " 'uu, —utu,

— Adau® " 'u, + (6/2)u s
U, = —PB(B—Dul"lu, —2u’'uu,

1 B
"‘ﬁuﬂ Uy — U Uy,

—a(a — DAu* " u? — adu® " 'u, + (8/2)u,,.

(3.9)

Gazdag”’ has given a stability analysis of a pseudospectral
scheme for the inviscid Burgers equation; the amplitude and
phase of the error in the Fourier components remain bound-
ed. In our computations we used four terms in the Taylor
series (3.8) so that the truncation error is O(At*). The do-

Wt )

- o-_25 [+ YT .4 X
FIG. 10. Solution of Eq. (1.3) with initial discontinuous profile.
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FIG. 11. Solution of Eq. (1.3) fora=8=1:(a) A= -1, (b)A=1

main (0,27) was divided into 128 mesh points in which the
initial discontinuous nonzero profile occupied about 64
points in the middle of the domain so as to allow it to grow
due to diffusion as it evolves. We chose the mesh sizes
Ax = 0.005 and At = 0.01, and the initial profile f(x) = x,
xo=0,x, =02, =1 [see Eq. (3.1)]. As the computation
commenced, a tail of O(10~2) on either side of the nonzero
part of the profile was noticed. Being spurious, it was artifi-
cially cut off. The tail in the subsequent calculations was
much smaller and, in fact, vanished after a few steps. For

TABLE V. Solution of Eq. (1.3) with initial discontinuous profile by pseu-
dospectral and implicit predictor—corrector schemes at # = 1.75 (an implic-

TABLE VI. Comparison of numerical (pseudospectral and implicit finite
difference) solutions and the exact analytic solution for Burgers equation,
with smooth initial data at ; = 1. Here, A =0, 8=1, § = 0.001.

u(x,2)

x Implicit Pseudospectral Exact
—0.10 0.000 742 0.000 742 0.000 742
—0.08 0.001 869 0.001 870 0.001 870
—0.06 0.003 983 0.003 985 0.003 985
—0.04 0.007 341 0.007 342 0.007 342
—0.02 0.012 000 0.012 000 0.012 000

0.00 0.017 843 0.017 841 0.017 841

0.02 0.024 660 0.024 657 0.024 657

0.04 0.032 232 0.032 227 0.032 227

0.06 0.040 367 0.040 362 0.040 362

0.08 0.048 918 0.048 913 0.048 913

0.10 0.057 774 0.057 767 0.057 767

0.12 0.066 840 0.066 826 0.066 826

0.14 0.075 986 0.075 934 0.075 934

0.16 0.084 648 0.084 423 0.084 423

0.18 0.088 732 0.088 036 0.088 034

0.20 0.065 779 0.066 041 0.066 041

0.22 0.017 660 0.018 405 0.018 405

0.24 0.002 151 0.002 161 0.002 161

0.26 0.000 190 0.000 180 0.000 180

0.28 0.000 015 0.000 012 0.000 012

0.30 0.000 001 0.000 001 0.000 001

a=8=1,Eq. (1.3) reduces to

u, +uu, +Au=(6/2)u,,. (1.8)
Integrating (1.8) with respect to x we get

A=Age™ ™, (3.10)

where A, is a constant of integration, 4 = (* _ u dx and u,
U, u,,—0asx— + «.Ateach timelevel ¢, , we calculated
A, = A, é*". The embryonic shock for the solution of Eq.
(1.8) settled down to a smooth Taylor structure when 4,
converged to a definite finite value (see Table IV for the con-
vergence of A,). This indicated the evolution of the discon-

TABLE VII. Comparison of the exact and numerical solutions for the spe-
cial (linear) PDE with 8 =0, a = 1 [see egs. (3.11) and (3.12)].

u(x,2) u(x,4)
it scheme was used when the profile became smooth by a pseudospectral
scheme). Here,a =4 =0,8=1, 6 = 0.001, x, = 0.16. x Numerical Exact Numerical Exact
u(x,1.75) —0.11 0.000 51 0.000 57 0.0 0.0
0.37 0.005 29 0.005 46 0.0 0.0
x Pseudospectral Implicit 0.85 0.028 86 0.028 97 0.000 03 0.000 03
1.33 0.086 56 0.086 33 0.000 16 0.000 17
—0.08 0.000 02 0.000 02 1.81 0.144 87 0.144 63 0.000 71 0.000 72
—-0.04 0.001 02 0.001 00 2.29 0.13598 0.136 21 0.002 31 0.002 33
0.0 0.008 72 0.008 70 2,77 0.071 86 0.072 11 0.005 63 0.005 62
0.04 0.026 42 0.026 47 3.25 0.021 43 0.021 46 0.010 23 0.010 19
0.08 0.048 46 0.048 57 3.73 0.003 57 0.003 59 0.013 87 0.013 83
0.12 0.071 19 0.071 35 4.21 0.000 32 0.000 34 0.014 07 0.014 09
0.16 0.093 64 0.093 96 4.69 0.000 01 0.000 02 0.010 70 0.010 75
0.20 0.084 80 0.084 81 517 0.0 0.0 0.006 12 0.006 15
0.24 0.001 83 0.001 76 5.65 0.0 0.0 0.002 64 0.002 64
0.26 0.000 09 0.000 10 6.13 0.0 0.0 0.000 86 0.000 85
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FIG. 12. Solution of Eq. (3.11) for (a) A= — 1, (b)A=1.

tinuous profile into a smooth Taylor structure (see Fig. 10).
At this stage we switched over to implicit scheme (3.2) and
(3.3) and continued the computation. The latter is less ex-
pensive in terms of computer time and is sufficiently accu-
rate [see Table V, and Fig. 11 for solution of Eq. (1.8) witha
smooth initial profile]. We shall show the accuracy of the
implicit finite difference scheme (3.2) and (3.3) with the
help of exact solutions of two special cases of the PDE (1.3).
One is the Burgers equation ( 8= 1, A =0), whose exact
solution is given by Eq. (2.1). The other is the linear partial
differential equation

U, +u, +Au=(6/)u,,

{a =1, = 0). It has an exact single hump solution

A x—1)?

"= e P { - [ : 261 : +'{t” G
which decays exponentially with time (and distance). This
is a product solution, quite different from (2.5). The nu-
merical solution (by implicit predictor—corrector scheme)
of (1.3) with initial smooth profile and the exact solutions
(2.1) and (3.12) are presented in Tables VI and VII. The
agreement is very good, ensuring the adequacy of the implic-
it predictor—corrector scheme for solving (1.3) with smooth
initial profiles (see Fig. 12).

IV. TRANSITION OF SOLUTION OF INITIAL VALUE
PROBLEMS TO SELF-SIMILAR FORM OR
INTERMEDIATE ASYMPTOTICS

We have already detailed in Sec. III the numerical
scheme, implicit finite difference for smooth initial profiles
and pseudospectral for the discontinuous initial profiles. We
give here the results of the computations, when the initial
profiles evolve into (fully nonlinear) self-similar solutions
discussed in Sec. II. We find that for 1 <a@<3 and 4 >0, the
initial profile, continuous or discontinuous at the front, soon
evolves into a self-similar form discussed earlier. Figure 13
shows a typical evolution of the profile to its self-similar
form for the case a@ = 3, f = 1, both when the initial ampli-
tude #max is less than 1 and when it is greater than 1; only it
is required to vanish at x = + o in a reasonably smooth

(3.11)
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way. The self-similar regime was identified by matching the
maximum of the numerical solutions of (1.3) and (2.19)
and ensuring that the difference between the two solutions in
the entire interval — « <X < oo is less than 5X 107>, This
required a proper choice of the amplitude parameter 4 [see
Eq. (2.17)]. Table VIII shows the times ¢, at which the self-
similarity comes about for different pairs (a, ). These ter-
minal solutions are fully nonlinear and hold for all > ¢,.
Their decay law is given by u,,,, = O(t'/' =), which is
the same as found by Murray for (1.7) for the range
1 < @< 3, subject to the condition || €1 and g, #0, u>0. We
note here, however, that the condition g, (#) #0 does not
play any role in our case.

V. NON-SELF-SIMILAR SOLUTION

For a > 3, the numerical solution of (1.3) does not obey
the asymptotic decay law u,,,,, = O(¢'/"! =® ), instead u,,,,
decays like O(¢ ~'/2) in agreement with Murray'® (see Table
IX). This is plausible, since in the present case the final (old
age) regime of the wave is essentially linear, nonlinear con-
vection and damping playing no significant role. The single
hump in this case has the form u = ¢t ~'/? exp( — 7%). The
self-similar decay law O(¢!/¢! =), on the other hand, pre-
dicts a rate slower than ¢ — /2 for @ > 3. Thus, for & > 3, even
though the self-similar form of (1.3) exists and satisfies
boundary conditions at x = + oo, it is physically unrealis-
tic. Another interesting feature that emerges from our nu-
merical solution of Eq. (2.19) for @ > 3 and 4 <0 is the ap-
pearance of a shelf on the left end tail of the self-similar
profile (see Fig. 14). The solution decays in an extremely
slow manner characteristic of the shelf. Equation (1.3)
shares this feature with the modified KdV?? equation (1.9)
when g > 0. It must be pointed out, however, that these self-
similar solutions for 4 < 0, a > 3 are not intermediate asymp-
totics and the solution of (1.3) does not manifest any shelves
(see Fig. 15).

Now we turn to the case 0 <a<1, for which the self-
similar form does not exist. The solution depends on the sign
of A. If A > 0, the initial profile shrinks, decays, and becomes

Sachdev, Nair, and Tikekar 1516
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extinct in a finite distance and a finite time in agreement with
Murray’s!® analysis. The case of negative damping, 4 <0,
unfolds several fascinating features. The nature of solution
again depends crucially on the parameter a. The special val-

TABLE VIII. Approximate time ¢, when the self-similar regime for GBE
(1.3) sets in for different a and B. The initial timeis ¢, = 1.

a ﬁ 1,
1.5 0.25 61
20 0.50 16
2.5 0.75 4
30 1.00 3

TABLE IX. The (large time) asymptotic behavior of the solution of Eq.
(1.3) for @ > 3: comparison of numerical u,.,, and u,, = Ct ~'/2.

Upnax Uinax

t Numerical Analytic t Numerical Analytic
a=5p8=24=15§=001 a=4F=154=1,6§=001

5.0 0.0867 0.0855 5.0 0.0856 0.0846
100 0.0621 0.0604 10.0 0.0613 0.0598
15.0 0.0510 0.0493 15.0 0.0503 0.0488
200 0.0443 0.0427 20.0 0.0437 0.0423

a=5F8=2,A=—1,6=001 a=48=151=—1,6=001

3.5 0.1028 0.1022 35 0.1023 0.1019
40 0.0965 0.0956 4.0 0.0960 0.0953
5.0 0.0869 0.0855 5.0 0.0865 0.0852
6.0 0.0796 0.0781 6.0 0.0792 0.0772
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SR

FIG. 14. Solution of Eq. (2.19) for @ =5, A = — 1. Shelf appears on the
left.

ues @ = 1 and a = 2 seem to demarcate distinct behavior of
the solution. We assumed A to be — 1 in all cases. For
0 < a < 1, the solution grows to peak somewhere in the mid-
dle in a short time; it shows some small persisting wiggles

(a)

ey

©-2

-t L] i

FIG. 15. Solution of Eq. (1.3) for A <0: (a) a=4,8=15, (b)a =3,
B=2.

15618 J. Math. Phys., Vol. 27, No. 6, June 1986

Ty
°'“‘n——t =15
{4
—t:v2
.33
t:vo
-4% Z~O 45 =X

FIG. 16. Solution of Eq. (1.3) fora=0,=3,A= — 1.

when B> 1 (see Figs. 16-19). When 1<a <2, the solution
grows and breaks at the front in a short time (see Figs. 11a,
12a, and 20-22). For the case a = 2, the solution first decays
(implying the dominance of nonlinear convection in the ear-
ly stages) and then grows to break at the front (see Figs. 23
and 24). For a > 2, the negative damping is too small and the
solution continuously decays with time (see Figs. 15, 25~
27).

It is of some interest to compare the special case (1.8),
Lardner and Arya,'” with the corresponding modified KdV
equation (1.9). Both have the same form of convective and
damping terms. Leibovich and Randall have numerically
studied the initial value problem for (1.9). They treated a
whole class of initial conditions that give rise to a variety of
solitons, differing in number and amplifying or decaying de-
pending on whether A <0 or A >0, respectively. They dis-

s X

-4 X Py

FIG. 17. Solution of Eq. (1.3) fora =0.25,=3,A= — 1.
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©.5

(b)

o-2

)

FIG. 18. Solution of Eq. (1.3) fora =051 = — 1: (a) B=1,(b)B=3.

et t-\.GO

o

covered three integrals for the entities

A, = f u(x,)dx,

E= %f u?(x,t)dx, 5.1

X =

1 f xu(x,t)dx,

r

which represent area under the wave, or its momentum, its

15189 J. Math. Phys., Vol. 27, No. 6, June 1986

energy, and its center of gravity, respectively. It is easily
checked by direct integration of (1.9) and integration after
multiplication by 4 and x, respectively, that 4,, E, and X
satisfy the following relations:

A, =Age",
E'—'EOE_ZM,
X —Xy= (uEy/Ad,) (e~ — e~ 7y,

The subscript ( refers to the value of the relevant quantity at

(5.2)

Sachdev, Nair, and Tikekar 1519



FIG. 19. Solution of Eq. (1.3)
fora=8=0.51A=—1.

t = t,. It is straightfoward to check that the integrals (5.2)
with g = - 1 exist for the modified Burgers equation (1.8)
as well. The main features in the solitary wave study of Lei-
bovich and Randall is the appearance of a trailing shelf and
amplification or decay of the wave depending on the sign of
A. They also found a terminal similarity solution for (1.9)
for each soliton in isolation. While this solution confirmed
the major features (dominant soliton plus sheif), it wasnot a
uniformly valid solution since it failed to satisfy the bound-
ary condition at x = «. Equation (1.8) does not possess a
self-similar solution. It shows amplification or decay of the
initial profile depending on whether A <0 or A > 0 (see Fig.
11). These numerical solutions satisfy the relations (5.2)
(see Table X).

VI. CONCLUSIONS

We have studied the initial value problem for GBE
(1.3) with the single hump type of initial conditions with a

L&l

t-35
1-0-

-0-5 [+] -5 1o 16

FIG. 20. Solution of Eq. (1.3) fora=1,8=05,A= — 1.
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view to confirm that the self-similar form (2.5) indeed con-
stitutes an intermediate asymptotic. This turns out to be the
case for 1 <a<3, A>0, in agreement with Murray’s case
(iii). It is remarkable that the self-similar form (2.5) of
(1.3) yields the same asymptotic decay law for the wave as
the characteristic method does for the inviscid form of (1.3).
The structures of the two waves will be quite different. In-
deed, the sharp shock of Murray'® remains sharp for all time
and there is neither spreading nor decay due to diffusion
(which is absent in his model). We believe that Eq. (2.9) for
the “reciprocal” function H, which is a special case of (1.5),
is new. Equation (1.5), we postulate, should have an impor-
tance for the Burgers equation similar to the Painlevé equa-
tions for the KdV-type equations. As we mentioned earlier,
Eq. (1.4) has the solution

u=t- 1/2ag(77)

_ (t/a)—1/2aG—l/a(,'7)’ (61)
1 1 %
- 0.5 00 oS (X3
FIG. 21. Solution of Eq. (1.3) fora=1.5,8=051= — 1.
Sachdev, Nair, and Tikekar 1520



u r:k)

X

o6
FIG. 22. Solution of Eq. (1.3) fora =1.5,8=1,4A= — 1.
where G is governed by
GG" — ((a + 1)/a)G"? + 27GG'’

—2(1—-aj)G*—-2¥?G' =0 (6.2)
and

7 =x(25t)""2

This equation is again a special case of (1.5), and differs
from (2.10) for the Burgers equation in merely having dif-
ferent numerical coefficients. Indeed, the Euler-Painlevé
equation (2.13) is rather special and has only four terms on
the left; even the GEPE for the Burgers equation has five
terms. We found it more convenient to solve the connection
problem (2.19)-(2.21) for (2.7) and then draw conclusions
for (2.9). Equation (2.9) has been analyzed by us only to
some extent; further analysis of this equation or (2.7) may

u (k)

t:\4

0.2+ ta

g

-1 [-2)
FIG. 23. Solution of Eq. (1.3) fora=2,8=1,A= — 1.
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U(Xat
02

x=t t=25

ok
[
F N
o
[
N
[

B} T
-1 -] 1

FIG. 24. Solution of Eq. (1.3) fora =2,8=05,A= — 1.

-0.5 [ ? 30

FIG. 25. Solution of Eq. (1.3) fora=2.5,8=0.5,A= — 1.

-t
FIG. 26. Solution of Eq. (1.3) fora=25,=1,A= — 1.
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(a)

(b)

-1

FIG. 27. Solution of Eq. (1.3) forf=1,A= —l: (a)a=3. (b)a=4.

TABLE X. Numerical and analytic values of the area 4,, energy E, and
center of gravity x of the profile at various times for Eq. (1.8) (¢, = 1.6,
A, = 0.1359, E, = 0.01897, X, = 0.155 37) [see Eq. (5.2)].

A E x

r

t Numerical Analytic Numerical Analytic Numerical Analytic

0.000 52
0.000 34
0.000 23
0.000 16
0.000 10
0.000 07
0.000 05
0.000 03
0.000 02

0.160 95
0.164 19
0.167 20
0.169 57
0.17143
0.172 90
0.174 07
0.17500
0.17573

0.160 48
0.164 66
0.168 09
0.170 89
0.173 19
0.17507
0.176 61
0.177 87
0.178 90

0.000 49
0.000 31
0.000 20
0.000 13
0.000 08
0.000 05
0.000 04
0.000 02
0.000 02

1.8 0.02248
20 001839
22 001506
24 001233
2.6 001009
2.8 0.008 26
3.0 0.00677
3.2 0.00554
3.4 000454

0.022 47
0.018 39
0.01506
0.012 33
0.01009
0.008 26
0.006 77
0.005 54
0.004 54

be taken up at some subsequent time. However, as far as the
numerical solution of the initial value problem for (1.3) is

1522 J. Math. Phys., Vol. 27, No. 6, June 1986

concerned, our study is fairly complete. Some of the impor-
tant conclusions are the following. Equation (1.3) has no
self-similar solution except when 1 <a<3, 4 > 0. The solu-
tions for 0 <@ <1, A > 0 decay in a finite time and a finite
distance; when A <0, they spread and spike in the middle in a
relatively short time. For a > 3, no self-similar solution of
(2.5) forms an intermediate asymptotic. The wave profiles
in this case, with 4 <0, display a long shelf at the left tail—a
feature that has been noticed for the solitary wave evolving
under the modified KdV equation with a damping term (see
Fig. 14). As a nonlinear ordinary differential equation, Eq.
(2.19) with (2.20) as the asymptotic conditions does have
solutions for all & > 1 and all 4, positive or negative. In Part
II, we shall give a detailed study of the initial value problem
for (1.4) and its self-similar solutions governed by (6.2) to
fortify our claim regarding the importance of Eq. (1.5).
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The four-dimensional conformal Kepler problem reduces to the three-
dimensional Kepler problem with a centrifugal potential and Dirac’s

monopole field. Classical theory
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Department of Applied Mathematics and Physics, Kyoto University, Kyoto, Kyoto 606, Japan
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The four-dimensional conformal Kepler problem is reduced by an S ! action, when the associated
momentum mapping takes nonzero fixed values. The reduced Hamiltonian system proves to be
the three-dimensional Kepler problem along with a centrifugal potential and Dirac’s monopole
field. The negative-energy surface turns out to be diffeomorphic to .S X.S?, on which the
symmetry group SO(4) acts. Constants of motion of the reduced system are also obtained, which
include the total angular momentum vector and a Runge-Lenz-like vector. The Kepler problem
is thus generalized so as to admit the same symmetry group.

i. INTRODUCTION

Reduction of Hamiltonian systems has been investigat-
ed for years. Marsden and Weinstein gave a unified frame-
work for reduction of symplectic manifolds.' When a Lie
group acts symplectically on a symplectic manifold (M,»)
one can get a lower-dimensional symplectic manifold, called
areduced phase space, by using the momentum mapping for
the Lie group action. A Hamiltonian system (M,w,H),
whose Hamiltonian H is invariant under the group action,
can be reduced to a Hamiltonian system on the reduced
phase space. If the original Hamiltonian system admits a
symmetry group that is commutative with the group used for
the reduction, the reduced Hamiltonian system admits the
same symmetry group.

Iwai’ defined a “conformal” Kepler problem to associ-
ate the four-dimensional harmonic oscillator to the three-
dimensional Kepler problem. The conformal Kepler prob-
lem, which is closely related to the harmonic oscillator, was
proved to be reduced by an S ! action to the ordinary Kepler
problem. Owing to this reduction, the Kepler problem be-
comes feasible to analyze globally. The reduction was car-
ried out in the case where the momentum mapping of the S'!
action is set to take a fixed value zero.

A question now arises as to what reduced system comes
out if the momentum mapping is set to take nonzero fixed
values. The purpose of this paper is to answer the question.
The materials of the present article is outlined as follows.

Section II treats a reduction of the symplectic manifold
(T*R*,d6). Here R*, denoting R* — {0}, is endowed with a
conformally flat metric defined in the Cartesian coordinates
(x;),j=1,..,4,by

4 4
ds? =4r D dx, with r= z x7,
Jj=1

and d@ is the standard symplectlc form on the cotangent
" bundle 7*R*, which is expressed in the canonical coordi-

nates (x;, p;) on T *R‘~R*XR*as 2dp; Adx,. An action of

U(1)~S'"is defined on T*R*. Since the momentum map-

ping¥: T ‘R‘—»u( 1)*~R for this action is manifestly Ad*-

equivariant,' the W can be used for reduction of (7 *R*,d6).

The reduced phase space ¥~'(u)/U(1), ueR, will be
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shown to be diffeomorphic to T*R?, the cotangent bundle of
R® = R® — {0}, by using the Hopf mapping 7: R*—R>. This
reduction is known also as the Kustaanheimo-Stiefel trans-
formation,® and compactly reviewed in Ref. 4. However, the
reduced phase space is not symplectomorphic to the cotan-
gent bundle T*R> equipped with the standard symplectic
form. Let d6 ' denote the standard symplectic form on 7 *R?,
and (), a two-form describing Dirac’s monopole field on R

Then, given a symplectic form o, defined as d6’ + Q,, the
T*R® becomes symplectomorphlc with the reduced phase
space. Thus the reduced phase space is identified with
(T*R%0,). Itis to be noted here that through the reduction
the Euclidean metric is induced on R? from the metric ds? on
R*. It should be also noted that 7: R*>R? is a principal
U(1) bundle, so that the reduction to be performed in this
section gives an example of Kummer’s work® about the re-
duction of cotangent bundles of principal fiber bundles.

Though this section is an application of Kummer’s
work, the technique used is of great importance in treating
the symmetry in the following sections.

Section I11 is concerned with reduction of the conformal
Kepler problem by the U(1) action defined in Sec. II. The
conformal Kepler problem is a Hamiltonian system on the
symplectic manifold (7 *R*,d0) endowed with the Hamil-

tonian

1(1 & k

-3 (& 27+

2 \4r j=1 r
It is to be noted here that the first term in the right-hand side
is the kinetic energy with respect to ds?. Since the H is invar-
iant under the U(1) action, it can be reduced to a certain
Hamiltonian H, on T *R3. As is pointed out above, the Eu-
clidean metric is 1nduced onthe R>. Let (% X;, p;) bethe Carte-
sian coordinates on T *R’~R>XR>. Then the reduced
Hamiltonian H,, proves to have the form

Lepel X povg
s T

r j=1

The reduced system (TA*R3,0'”,H# ) coincides with the
Hamiltonian system that MacIntosh and Cisneros® treated.

The equation of motion for (7 *R> »0.,H,, ) indeed describes
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the Kepler motion in the presence of a centrifugal potential
and Dirac’s monopole field. This system can be regarded as a
variation of the ordinary Kepler problem, because it will be
shown in Secs. V and VI to admit the same symmetry group
as the ordinary Kepler problem does. In view of this, the
reduced system will be referred to as the MIC-Kepler prob-
lem, where MIC is short for McIntosh and Cisneros. It is
worth mentioning also that the reduction in this article is
closely related with the reduction that Satzer’ carried out for
the planar three-body problem. In this article, the metric ds?
is utilized to obtain the standard kinetic energy term in H,,.
In the Kummer’s work,” a change of time parameter was
carried out to obtain the same Hamiltonian.

Section IV shows that the regularized energy-momen-
tum manifold S*X.S? of the conformal Kepler problem is
reduced to the negative-energy surface S > X § 2 of the MIC-
Kepler problem.

In Sec. V, a symmetry group of the MIC-Kepler prob-
lem is studied. Combined with the result in Ref. 8, the reduc-
tion in this paper shows that the global symmetry group
SO(4) acts on every negative-energy surface of the MIC-
Kepler problem.

Section VI deals with first integrals for the MIC-Kepler
problem, which form clearly the Lie algebra of SO(4) under
the Poisson bracket. They can be obtained from the U(1)-
invariant first integrals of the conformal Kepler problem. It
is shown that the first integrals for the MIC-Kepler problem
consist of the vector constants obtained in Ref. 6; one is the
total angular momentum, and the other a Runge-Lenz-like
vector.

A quantum version of this article will appear in the next

paper.®

II. REDUCTION OF A PHASE SPACE (7"'1.14 ae)
Let (x; ),J = 1,2,3,4, be the Cartesian coordinates of R*,

and R* = R* — {0}. We define a conformally flat metric ds?
onR* by
ds? = 4r2d with r= Zx 2.1
j=1 j=1

Consider the cotangent bundle T *R* of R*. Let (v;) be any
tangent vector at xeR*. Then a cotangent vector p = ( p;)at
xis ass1gned by p; = 4rv;, j = 1,2,3,4, on account of (2.1).
Since T*R* is identified with R* X R*, every point of T *R*
can be expressed as a pair of column vectors (x, p). The
canonical symplectic form on T *R* is given by d6 with

6= ijdx

j=1

We define a symplectic U(1) action ¢, on T*R* by

(2.2)

D, (x,p) =(T(t)x,T(t)p) (teR), (2.3)
where!©
_ R(t) )
T(t) —( RY)
) _ cos(t/2) —sin(t/2))
with R(1) —(sin(t/2) cos(t/2) /° (2.4)

A simple calculation shows that the U(1) action leaves 8
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invariant, so that the group U(1)~S ! acts symplectically on
(T *R*,d6).

In order to reduce (T *R*,d8) by the U(1) action, we
look for the momentum mapping of the U(1) action. Ac-
cording to Abraham and Marsden,'' the momentum map-
ping ¥ of T*R* to u(1)*, the dual space to the Lie algebra
u(1) of U(1), is obtained by

Y(x,p)é= 6(.x,p) (Em)s (2.5)

where £ is an element of u(1), and &,,, M = T*R*, is the
infinitesimal generator of ®,. The &,, is easy to get from
(2.3) and (2.4). Since u(1)*~R, the ¥(x, p) is viewed as
real valued, and obtained from (2.5) in the form

¥(x,p)

It is easy to see that V¥ is invariant under the U(1) action.
This fact also means that ¥ is Ad*-equivariant, because
U(1) is Abelian.

Consider the level manifold for a fixed real number y;
W) ={(x,p)eT*R* W(x,p) =pu}. As u#0 is a
regular value of ¥, ¥~ '(u) is indeed a submanifold of
T*R*.

We show the following.

Lemma 2.1: W' ( ) is diffeomorphic to R* X R®.

Proof: Let { , ) denote the standard inner product in
R*. We define a basis {s;(x)},_,, .3, orthogonal with re-
spect to ( , ), in each cotangent space T*R* by

=4 =X p1+ X1 P2 —X4P3+X3p4).  (2.6)

So(X) =2( — X%, — X4x3) 7,
5,(x) = 2(x3,x4,x1,x2)7,
55(%) = 2( — Xg4X3,%5, — X)) 7,

53(x) = 2(xy,Xx5, — X3, —x4)T,

Q2.7

where the superscript 7 indicates the transpose. Then, the
equation W (x, p) = y is written as

(so(x), p) =4u (2.8)

This equation implies that p can be expressed for each xeR*
in the form

p——so(x) + Z a;5;(x), a€R, j=123. (29)

ji=1

Thus we can define a diffeomorphism of ¥ ~'( u) to R*X R?
by (x, p)e¥~'( p)—(x,a), where a = (a;)eR’. This com-
pletes the proof.

Now, since U(1) leaves ¥ invariant, itactson ¥~ '( u).
We are looking into how the action is expressed. Let (x, p)
and (x,p’) be in W~!'(u), and assume that
(x',p') = ®,(x, p). If pis expressed as (2.9), p’ is then writ-
ten in the form

? =& T(t)so(x) + 2 a;T()s;(x). (2.10)
j=1

One can eas11y venfy that

r= z x} = z x?

i=1 ji=1

and

T(t)s;(x) =s5;(x"), j=0,1,2,3.
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Hence Eq. (2.10) goes over into

=—s0(x)+ Eajsj(x) 2.11)
ji=1
Taking the expressions (2.9) and (2.11) into account, we
have the following. .
Lemma 2.2: The U(1) action on ¥~ !( u)=~R*X R’ is
given by (x,a)—{T(¢)x,a), where a is defined by (2.9).
Obviously, the U(1) action is free and proper, so that
the quotient space W~ '( ) /U(1) becomes a manifold.
We are now to show that ¥~'( 4)/U(1) is diffeomor-
phic to T*R?, the cotangent bundle of R3. To this end, we
define the mapping 7: R*—>R> by

X, =2(xx5 + Xp%4),

X, =2( —x,x4 + Xpx3), (2.12)

%= 5 - —x,
which is an extension of the Hopf mapping S >—S 2. It is then
clear that 7: R*—>R? is a principal U(1) bundle, where the
group action is the same as we have defined in (2.3). This
and Lemma 2.2 are put together to show that ¥~ '(u)/
U(1) is diffeomorphic to R*X R?, and hence to T *R>.

We wish to make further investigation into the diffeo-
morphism of ¥~'(x)/U(1) to T*R>. Let dr*: T* ., R®

—T*R* be the dual mapping to the tangent mapping

drm,: T .R* —>T,,(x) R?. Since for any tangent vector v = (v;)
at xeR" dm, (v) is given by
Uy
X; X, X, X,
v
dr, () =2| —x, x3 x, - X, 21,
v
X, X, —X; —X ?
v

(2.13)

for any cotangent vector p = ( §;) at m(x)€R>, dr*(p) is
given by definition as

X3 - x4 xl -

P
- X4 X3 X2 -~
* =2 . 2.14
dm(p) X x -z |2 (2.14)
X, —X; —X ?
Put another way, dm* is of the form
dm*(p) = z ;s (x). (2.15)

j=1

It follows from (2.15) and (2.9) that the range of d7* is
the subspace of T *R* given by ¥~ 1(0)nT *R*, and there-
fore dm* has the inverse when restricted to W ~'(0)nT *R*.
Further, we see that ¥~'(0) consists of all the elements
(x,dm*( p)) with xeR* and peT* ., R>. Accordingly, from
Lemma 2.2 .the quotient space ¥~1(0)/U(1) is diffeomor-
phic to 7*R>. We can then denote the natural projection
¥—1(0)—»>¥~'(0)/U(1) by

(@7*) ™" (x, p)—{m(x),(d72) " (p)) = (%, p).
(2.16)

Itis now an easy matter to obtain the diffeomorphism of
Y~!(u)/U(1) to T*R® In effect, a diffeomorphism
v,: ¥~ (1)—¥~(0) can be defined by

v, (x,p) = (x, p — (p/r)se(x)), (2.17)
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and thereby the composition

7, (x,p) = (d7*) " 'ov, (%, p) (2.18)
provides a principal U(1) bundle ¥~'( z)—T*R?, as is
known from the following lemma.

Lemma 2.3: Let (x,p) and (x',p’) be points of
W~!( ). Then the relation

(2.19)
) are on a U(1)

7, (x,p) =m, (x',p")
holds if and only if both (x, p) and (x'p
orbit.

Proof: For (x, p), (x',p’)e¥~'( u), the vectors p and p’
are expressed as

P ——so(x) + Z a;s;(x),

j-—l

)4 ——so(x )+ Z ajs;(x'),

j=1
respectively. Then from (2.15)—(2.18), we have
7, (x,p) = (7(x),a), 7,(x,p)=(7(x")a)
where a = (a;) and a’ = (a]) are column vectors. There-

fore, if the relation (2.19) holds, one has 7(x) = 7(x') and
a = a', and hence, for a certain ¢,

x' =T(tx, p' ———s x') + z a;5;(x').
ji=1

Thus from (2.11) one has P, (x,p) = (x', p'). The converse
is easy to check. This completes the proof.

Thus we have proved the following lemma.

Lemma 2.4: T*R® is diffeomorphic with ¥~ '(u)/
u(1).

We now proceed to a symplectic form o, induced on the
reduced phase space T*R>. According to Marsden and
Weinstein, 0, is determined by the relation

m*o, = i* db, (2.20)
where i,: ¥ p)—»T*R“ is the inclusion and the super-
script asterisk in (2.20) indicates the pullback. Writing out
i¥ dO by the help of p = uso(x)/r + Zp;s; (x), and collect-
ing those terms that amount to 7% (dX; ), we eventually ob-
tain

o,=d6'+9Q,, (2.21a)
where
do’' = z dp; \dx;, (2.21b)
ji=1
Q,‘ = — 3(i1 di2/\d.i3 +22 d.i3/\d.il
+J'c3 dx, \dx,), (2.21¢)

and r is written as

PeS

Jj=1
We note that d@ is the canonical symplectic form of T*R?
and ), viewed asaformon T’ ‘l'la, is Dirac’s monopole field
of strength — u, which is turned off when the angular mo-
mentum V is zero.
Thus we have shown the following theorem.
Theorem 2.5: The reduced phase space of (T *R*,d@) is
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symplectomorphic to (T *R;‘,ay ), where o, is given by
(2.21).

In conclusion, we show that a metric ds3 induced on R?
from ds? is the Euclidean one. The metric ds? is indeed de-
fined because ds? is invariant under the U(1) action. Let
(ds?)* and (ds3 )%, denote the inner products on the co-
tangent spaces T*R* and T'* ., R?, respectively. Then one
has the defining relation, for p, p'eT* ., R

r(x) ’
(ds2)4 e, (B, B') = (ds2)E(dm*(B),dr* (). (222)
We notice here that the right-hand side of (2.22) is indepen-
dent of a choice of x’ such that 7(x) = 7 (x") because of the
invariance of ds? under the U(1) action.
To show that ds?, is the Euclidean metric, we have only
to point out that the basis {sj (x)} introduced in (2.7) is an
orthonormal system with respect to (ds?)¥

(ds2)¥(s; (x),8, (x)) =8, jik=0,1,2,3.
Then from (2.15), (2.22), and (2.23) it follows that

(2.23)

3
(ds5) b (B, P = 3, Bib)» (2.24)

j=1
which proves our assertion.

lll. REDUCTION OF THE CONFORMAL KEPLER
PROBLEM

The conformal Kepler problem s a triple (7 *R*,d6,H),
where the Hamiltonian H is defined by

1(1 & , k -
H=—|— z p;|—— (k=a positive const.).
r

2 41’1:1
(3.1)

By using the notation (ds?)* introduced in the last section,
the kinetic energy is expressed in the form

1 (ds2)*(p, p). (3.2)

Furthermore, the distance between the origin of R* and a
point xeR* is proportional to 7, so that the potential term
— k /r is of Kepler type. This is why we call the Hamilton-
ian system the conformal Kepler problem.

Itis easy to see that H is invariant under the U(1) action
®,: that is, H = Ho®,. Consequently, H can be reduced by
the U(1) action to a Hamiltonian defined on the reduced
phase space (T *R3,a# ); the reduced Hamiltonian H, is de-
termined'! by

Hoi, =H,om,. 3.3)
Substituting s, (x)/r + Zp;s; (x) for p in (3.2), and using
(2.23), we find from (3.2) the reduced kinetic energy and
therefore the reduced Hamiltonian H,, in the form

1 &, 4k
2 jgl pj + 2"2 r ’
We note again that r’=3%’. The reduced system
(T “]R3,a” »H, ) can be interpreted as follows. Recalling that
the Euclidean metric ds? is induced on R?, we see that the H e
is a Hamiltonian for the usual Kepler problem plus the cen-
trifugal potential 1°/2/7. If 4 = 0, H,, becomes the Hamil-
tonian for the Kepler problem. As we have seen in Sec. II
that the symplectic form o, contains Dirac’s monopole field,

H, = (3.4)
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we now understand that the reduced system describes a
Kepler motion on which both a centrifugal force and a mag-
netic force due to Dirac’s field are put on. To see this in
detail, we consider the Hamiltonian flow of the reduced sys-
tem. The Hamiltonian vector field X, for H,, is determined
by

—dH, =X, l0,, (3.5)

where J indicates the interior product. Hence the equation
of motion

d . .
— (xp)=X,(% P
7 (%, P) (%, D)
can be put, after a calculation, into the form

d% _d% ( p w_k
dt>  dt X( P x) grad (2;2 r ) > G0
where X denotes the vector product operation.

Theorem 3.1: The reduced Hamiltonian system
(T*R%o0,,H, ) of the conformal Kepler problem describes
motions of a charged particle in the presence of Dirac’s mon-
opole field B, = — uX%/r’ of strength — y and a Newtonian
potential — k /r plus a centrifugal potential x2/2/°. This
Hamiltonian system will be referred to as the MIC-Kepler
problem.

Remarks: The velocity of light, the particle charge and
the mass of the particle are all set at unity in Theorem 3.1.
The reduced system (T"‘][P,a,, ) is the very one that
MacIntosh and Cisneros® treated. However, they described
the system by using a vector potential. The fact that the vec-
tor potential for Dirac’s field B, can be defined only locally
prevented them from treating the system globally. Further,
they adopted the Euclidean metric in reducing the kinetic
energy on T*R*, and consequently came to an excessive fac-
tor in the angular momentum term of the kinetic energy on
T*R>.

The result in this section is deeply concerned with the
Kummer-Satzer work.>’ They started with a Hamiltonian
having the kinetic energy term related to the standard flat
metric in R*, and performed the reduction of the Hamilto-
nian followed by a change of the time parameter to get a
reduced Hamiltonian similar to ours. However, because of
the use of the metric ds?, our reduction does not need the
excessive procedure of the parameter change.

In the following sections, we study the symmetry aspect
of the reduced Hamiltonian system. As a result, the system is
regarded as a generalization of the Kepler problem.

IV. NEGATIVE-ENERGY SURFACES FOR THE
REDUCED SYSTEM

In this section, we consider reduction of energy-momen-
tum manifolds to obtain energy surfaces for the reduced sys-
tem. We denote by M, , the energy-momentum manifold
that is defined as the intersection of the energy surface
H = — A?%/8, A being a positive constant, and the level sub-
manifold W~ '( z). We remark that in Ref. 2 the regularized
energy surface, denoted by H = — 1 2/8, was considered in
order to treat the flows going out of the domain 7 *R*. How-
ever, in the present case we do not have to treat the regular-
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ized energy surface, because the flows do not go out of T’ *R*
on account of £ #0.

As in Ref. 2, we consider a Hamiltonian system
(T *R*,d6,K), where K is given by

l 4 '12 4
K=—%p+= %
2]=1 2 ji=1

We treat (x, p) as if they were Cartesian coordinates in R*
XR*DT*R®. Then the Hamiltonian system (4.1) is
thought of as the harmonic oscillator. From (3.1) and (4.1)
we obtain the relation between H and X,

4r(H + A%/8) = K — 4k. (4.2)

It follows from this that the energy surface H = — 4 2/8 co-
incides with the energy surface K = 4k. Thus the energy mo-
mentum manifold M, , is given by

M,, = {(x, p)eT*R*, K(x,p) =4k and ¥(x, p) =u}.
(4.3)

It is of great use to introduce the complex variables w;,
j=1234,by

w, = (Ax; — p;) +i(Ax, + py),
w, = (Ax; — py) + i(Ax4 + p3),
ws = (Ax; +p,) +i(Ax; — py),
Wy = (Ax3 + py) + i(Axy — ps).

Hence R* X R* is identified with C*. With (4.3) and (4.4), a
simple calculation shows that M, , is defined by

(4.1)

(4.4)

[0,]? + [w,|* =42k — A p), (4.52)

[ws]? + |w,]? = 42k + A p). (4.5b)
In order that M, , exists, A and u must satisfy

A |p|<2k. (4.6)

Incase of A |u| < 2k, the conditions (4.5) imply that M, , is
diffeomorphic to S *>X.S>. On the other hand, if 1 |u| = 2k,
the conditions (4.5) define S'3, since either of (4.5a) and
(4.5b) defines a single point {0}.

Theorem4.1: Under the condition A x| <2k, the energy-
momentum manifold M , is diffeomorphic to either of the
following:

() §°XS? (4 |u|<2k),
(b)S> (A |g| = 2k).

Now, we proceed to the reduction of M, ,. Let (X, p)
=, (x, p) for (x,p)eM; ,,. Then from (3.3), one has
H, (%, p) =Hoi,(x,p) = —A%/8. Owing to the fact that
7, is a projection from W~'( u) to T*R? M, , is mapped
onto the energy surface, H, = —A1?%/8, of the reduced
Hamiltonian system (7 *R% 0, H,).

We will examine the topology of the energy surface H,,
= — A%/8 in what follows. To do so, we point out that the
U(1) action on C*, the w space; takes the matrix form

eit/212

(" ) (@7
where I, is the 2X2 unit matrix. This expression together
with (4.5) shows that M, ,/U(1) is diffeomorphic to §3
X83/U(1)~S?xS? (see Ref. 8), if A |u| < 2k.

In the case of A |u| = 2k, M, , degenerates to S>3, so
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that we have §°/U (1) ~S % Thus we are led to the following
theorem.
Theorem 4.2: By the U(1) action, the energy-momen-
tum manifold M, , is reduced to the energy surface H,
= — A ?/8 of the reduced Hamiltonian system, which is dif-
feomorphic to either of the following:

(a) $°%X8? (4 |u]<2k),
(b) S? (4 |u|=2k).

In conclusion we mention what is happening in the case

of A |u| = 2k. The energy value — A ?/8 is then equal to

— k%/2u* Wenote that — k 2/2u? is the minimum value of

energy because the potential U, = u?/2r* — k /r of the re-

duced system has the minimum value — k 2/2u?. Therefore,

the S % in the above theorem consists of all the points of equi-
librium.

V. THE SYMMETRY GROUP OF THE REDUCED
HAMILTONIAN SYSTEM

This section shows that the symmetry group SO(4) of
the reduced system is derived from the symmetry subgroup
of the conformal Kepler problem through the reduction.

It is well known that SU(4) acts on the energy surface
K = 4k of the harmonic oscillator (7 *R*d6,K). Since the
regularized energy surface, H= — 12/8, coincides with
K = 4k, as was pointed in Ref. 2, SU(4) also acts on the
regularized energy surface H = — 4 %/8.

We now look for subgroups of SU(4) that leave M, ,
invariant. We start with the case of A4 || <2k. Let A be a
4X 4 matrix leaving M, , invariant. Then it must leave in-
variant the conditions (4.5a) and (4.5b), so that 4 is ex-
pressed in the form

A=(B C)' B,CeU(2). (5.1)

If 4 is a matrix of SU(4), B and C are subject to (det B)
X (det C) = 1. Thus we have a subgroup.$ (U(2) X U(2)) of
SU(4), which acts onM; ,. Weexamine S(U(2) X U(2))in
detail. Let det B = ¢” (0<#<2w7). Then 4 is decomposed to
either

€ ) )
e—x’x/zl2 Cl

(_eit/ZI2 )(_BI ) (5 2b)
_e—it/2]2 —-C' ’ :

where B’ and C' are the elements of SU(2) that satisfy
B=¢""B’ and C=e~"/2C’, respectively. Expressions
(5.2a) and (5.2b) show that U(1) xSU(2) xSU(2) is a
double covering group of S (U(2) X U(2)), where the factor
U(1) in the former has the parameter ¢ ranging over
0<t<4w. It is easy to see that U(1) XSU(2) xXSU(2) also
actson M, , through (5.2a).

In what follows, we treat U(1) XSU(2) xSU(2) in-
stead of S(U(2)XU(2)). The U(1) of U(1)xSU(2)
X SU(2) gives the action (2.3) or (4.7). We now look at
SU(2) XSU(2) acting on M, ,,. Let the action of 4eSU(2)
XSU(2) be denoted by ®,. Since U(1) and SU(2)

(5.2a)

or
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SU(2) commute, one can well define the reduced action
on the energy surface H, = — 1%/8 by

<I>A°1r#(w) =7,°P,(w), (5.3)

where weM; , CC* The action of 4 on the energy surface
H,= -2 2/8 is not effective. In fact, for 4 = gz,Iz) and
A= (—1I,,—I,), the definition (5.3) reads ® o7, (w)
=, (w) for any weM, ,. Hence, we see that SU(2)
XSU(2)/ZzzSO(4) acts on the energy surface H,

— A %/8 effectively, where Z, = {(1,,1,),( — I,, — 1) }.

In the case of A |u|=2k, the symmetry subgroup
should reduce to SU(2), either of the factors of
SU(2) XSU(2), according to the degeneracy of S°X .S 3 to
S3. The same discussion as above shows that SU(2)/Z,
~8S0(3) acts on the energy surface H, = — k?/2u?, where
z7,=1{I, - L,}.

Thus we obtain the following.

Theorem 5.1: The symmetry group acting on the energy

X
3,

surface H, = — A °/8 effectively is either of the following:
(a) SO(4) (4 |u|<2k),
(b) SO(3) (A |u| =2k).

V1. CONSTANTS OF MOTION FOR THE REDUCED
HAMILTONIAN SYSTEM

In Sec. V, we have shown that a symmetry subgroup of
the conformal Kepler problem is reduced to the symmetry
group of the reduced system. On a similar idea of reduction,
we can obtain constants of motion for the reduced system.
Let F be a function invariant under the U(1) action. Then
one can define a function F,, on the reduced phase space
(T "‘R3,a ) through F, o, = Foi . Further, the Hamilto-
nian vector field X, is related to Xp by 7. Xp(x,p)
= X, (7, (x, p)), so that the flows of them are in the relation

6.1)

H,, wecan prove that F, is a

7, °exp tXp = (exp tXF” yom,.

By (6.1) with F, replaced by
constant of motion if F is so;

F, ((exp tX,,P Nm, (x, p))

=F, (m,((exp tXy) (x, p)))

= F(i,((exp tXg ) (x, p)))

=F(i, (x,p))

= F, (7, (x, p))
Thus we have shown the following lemma.

Lemma 6.1: The U(1)-invariant constants of motion
for the conformal Kepler problem are reduced to the con-
stants of motion for the MIC-Kepler problem
(T*R’0,,H,).

The next thing we have to do is then to find U(1)-invar-

iant constants of motion for the conformal Kepler problem.
We here recall the relation (4,2), from which we can obtain®

4rXy =X, on H= —A7%/8 or K=4k. (6.3)

This shows that the flows of X, and X coincide, within a
change of parameters, on the energy surface H = — A %/8or
K = 4k. Accordingly, constants of motion for the harmonic
oscillator may be viewed as constants of motion for the con-
formal Kepler problem when restricted on the energy sur-

(6.2)
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face H = — A ?/8. Thus we are seeking for U(1)-invariant
constants of motion for the harmonic oscillator, for a while.

Constants of motion for the harmonic oscillator are ex-
pressed in the form®

1

F= C.zZ,, 6.4
21/1 R kz_ . ki“j“k ( )
where C = (C; ) are anti-Hermitian matrices of tr C =0,
and
z; = Ax; + ip;. (6.5)

Let Q be a constant of motion with coefficient matrix D.
Then the Poisson bracket of F and Q is given by

{FQ}—— Z [C>D]kazk)

j k=1
where [C,D] denotes the commutator of matrices C and D.
We notice here that the momentum mapping ¥ we have
dealt with is also given in the form (6.4) with C substituted

by
1 N2 ) . ( - 1)
= — h = .
5 ( N, with N, 1

Thus we know from (6.6) that U(1)-invariant constants of
motion are those that have coefficient matrices commuting
with N. Such a matrix C that commutes with ¥ can be ex-
pressed as a sum of an antisymmetric real matrix 4 and a
symmetric pure imaginary matrix B; C = A4 + B. We take
basis 4,’s and B;’s, j = 1,2,3, such that 4 and B are ex-
pressed, respectively, in the form

A= a4

j=1

(6.6)

(6.7)

0 a, a, a,
> ° -4 @] (6.8a)
—a, a, 0 a,
—a, —a, —a; 0
and
B= z b;B;
j=1
b, 0 b, —b,
iA 0 b, b, b,
=T b, b, —b, o I (6.8b)
—b, b 0 — b,
where a;, beR,j=1,2,3.

Hence the constants of motion corresponding to 4,’s
and B;’s are expressed, by writing out (6.4) for respective
matrices, in the form

Ji=1(x1p4— X4 P1 + X302 — X2 P3),
Jr =3 (X p3 —X3p1 + X, P4 — X4 P2)s
Jy=4(x,p; — %P\ + X4 D3 — X3 P4),
Q1 =1} (P1P3+P2Pa) + (A2/4) (x1x5 4 x2%,),
Q@ =1 (P2p3 — P1Pa) + (A7/4) (x2%5 — X1X,),
Q=4 (pt +p: —p5 —pi) + (A7/8)
X (%} + x5 —x3 —x3).
These are viewed as constants of motion for the confor-

(6.9)
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mal Kepler problem when restricted on the energy surface
H= —27%/8. We now show that these functions can be
made into constants of motion for the conformal Kepler
problem. To this end, we proceed to investigate these con-
stants of motion in detail. One can see that the J;’s are them-
selves constants of motion for the conformal Kepler prob-
lem, because calculation gives {J,,H} = 0. We turn to the
Q,’s. Calculation shows that the Poisson bracket of @, and H
is put into the form
{0, HY= — (/nV(H+AY/8){Q,r}, j=123.
(6.10)
Since {Q,,7}#0, Eq. (6.10) means that Q, is constant along
the flows of H, if and only if the flows are on H = — 4 %/8.
We can make Q,’s into constants of motion, without restric-
tion on the special energy surface, by substituting — 8H for
A ?in the Q;’s. In fact if we denote by the Q s the functions
made in such a manner, we see that the Poisson bracket of Q
and H vanishes. Further, the Poisson brackets among them
are calculated to give

{Jhrlj} = €p s {JIan} = €nx Qx>
{Q}an} = €y i ( — 2H).
Thus we have the following.

Lemma 6.2: Functions J; and Qj, j=1,2,3, defined by
(6.9) with A ? replaced by — 8H are U(1)-invariant con-
stants of motion for the conformal Kepler problem, and sub-
ject to the commutation relations (6.11).

Now, from Lemmas 6.1 and 6.2 we can obtain constants
of motion for the reduced system by the recipe

[J1uome =J0% [@)uom =00k (612)
After using the same method as applied in obtaining the re-
duced Hamiltonian H,,, we can obtain

(V1) = X2 b3 — X3 B, + pX, /1,

(2], = %35, — %, ps + uXy/1,

/3], =X Py — X, Py + p%s/1,

[él]p = ([le,;ﬁs — [5],D2) + kx,/T,

[QZ]” = ([/31,D1 — [V1],P3) + kXo/7,

(051, = ([1,)uz — [Jo)uB1) + K/

Commutation relations among these constants of mo-
tion are the same as (6.11) because of the following lemma.

Lemma 6.3: Let Fand Qbe U(1)-invariant functions on

T*R* and F ", and Q, the reduced functionson T *R3 defined
by (3.3) with H replaced by F and @, respectively. Then

{F.Q}ei, ={F,,Q,}orm,, (6.14)
where the Poisson bracket in the right-hand side of (6.14) is

(6.11)

(6.13)
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defined not through the canonical symplectic form d@' but
through the reduced symplectic form o,,.

Proof: We note that the Hamiltonian vector fields for F
and F, are related by 7,.Xr(x, p) =X,.~p(1r” (x,p)). The
same relation holds for the Hamiltonian vector fields for Q
and @, . Then from the definition of the Poisson bracket and
of the reduced symplectic form it follows that

{F,Q}0i, (x, p) = dO(Xy,Xr)oi, (x, p)
= (i$d0)(Xo.Xf)(i, (x, p))
= (m30,)(Xo.XF) (X, p)
=0, (7, X, Xp)(m, (x, p))
=0, (X ,X¢ )m, (x, p))

={F,,Q,}om, (x,p). (6.15)

This ends the proof.

We mention that, using the equation of motion (3.6),
Maclntosh and Cisneros® derived two vector constants of
motion; for ¥eR? and peR?,

D, =xXp+uk/r, R,=D,Xp+kx/r. (6.16)
Our constants of motion (6.13) coincide with theirs. The D,
and R, are the total angular momentum and the Runge-
Lenz-like vector. If u = 0, these constants of motion become
the well-known ones in the Kepler problem.

Theorem 6.4: The U(1)-invariant constants of motion
given in Lemma 6.2 are reduced to constants of motion, giv-
en by (6.13), for the MIC-Kepler problem (T*R%0, ,H,,).
These are subject to the Poisson bracket relation

{7 ]u'[{{]#} = €n [J:]w
{7 ][2]0} =€ [Qi L
{1011,5[01.} = €m [V 1. ( —2H,).

(6.17)
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The integral representation of the inverse of a determinant and the Grassmann representation of a
determinant are used to derive an expression for the average resolvent for a Gaussian orthogonal
ensemble. The expression is compared with the one obtained using Lagrangian formalism.

I. INTRODUCTION

It has been shown' recently that Grassmann integra-
tion? provides a powerful tool in calculating various ensem-
ble averages that are needed, e.g., in the study of the prob-
ability density function of single eigenvalue and many other
problems. In these studies one makes use of a generating
function® involving a Lagrangian that has both ordinary and
Grassmann variables. The purpose of the present work is to
describe a different formalism based on the integral repre-
sentation of a determinant and its inverse to derive an
expression for the average resolvent. We shall show that the
final expression that one obtains this way has an explicit
dependence on the dimension of the matrix. In working out
the ensemble averages we shall consider only the Gaussian
orthogonal ensemble* (GOE).

We describe the formulation in Sec. II. Concluding re-
marks will be presented in Sec. III.

Il. FORMULATION
The ensemble average resolvent g(z) is defined by
g(z) = (I/N)(Tr(z—H)™"), ()

where H is a real symmetric N X N matrix. The ( ) sign
denotes the ensemble average using the following distribu-
tion of the matrix elements of H:

P{H,}) = 2W/HNN =D p— (VONKN + 1) exp( — Tr H?)
ij .

(2)
|

It is easy to see that g(z) can be written as
_ 1 (3/9€)det(§ — H)

N detz—H) e,
Since the distribution of the matrix elements H; is

Gaussian, we use the following integral representation for
[det(z — H)] V2

[det(z — H)]~'/?

— g N/2j=N£2 f exp( — z XX, [ (2, —iz,)6,,

8(z) (3)

+iH,, ]) T » 4)

where, for the convergence of the integral, we have assumed
z;>0.

For the det(&§ — H) we use its Grassmann representa-
tion given by>

det(é — H)

= f exp( - Y a* (&6, —H,., )a,,) [I4e?, da... .

(3

By writing a similar expression to (4) with the integra-
tion variables y,, we get the representation of the inverse of
the determinant in expression (3).

It is now straightforward to carry out the integrations
over the matrix elements of H. Using expressions (2)-(5)
we get

g(z) = (Nri) ™! ifem[ -1 S +yttiY i +y)+ Y xx; + )’ —§; ata;
a& 3 x £<)

4

j 1 :
— =3 (% +)d)ata +— Y ataare, +i Y (xx; +yo;) (aka; + ata, )] '
2% >4 k<

[I8x« dy, da¥ da, . (6)

=z k

The next step in the derivation is to integrate over x,, y, , a¥, and a, . The Lagrangian formalism this step is carried out using
the generalized Hubbard-Stratonovitch transformation.' In the present formulation we can collect terms of one kind, e.g.,
=%, and 2, _; (x,x;)?, and express them as (2x3 )* and then apply the usual transformation,>® which converts a Gaussian
into an exponential to each such term individually. Thus the first three terms in the exponent in expression (6) can be
rewritten as

3 3
o2 f I1 @ exp( -3t ?)exp > [ Gz + it))x} + Gz + it)yh + W26x,0 ] - (7a)
i=1 i=1 k

A similar transformation can be written down for the term 2, _ .a¥a, a}a;, which will be written as an integral over a new
variable 1,.

The only remaining terms are now the ones that are products of x,, ory, withay, a,, namely the fifth and the seventh term
in the exponent. These terms are taken care of by introducing four new Grassmann variables %*, 7, @ *, 8 and are rewritten as
© 1986 American Institute of Physics 1530
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JCXP\/% [; (7*a} — na, )%, + ; (0*a¥ — Oa, )y, —n*n —6*6 ]dﬂ* dndé*do. (7o)

We can now easily carry out the integrations over the variables x,, yi, af, a; . Using expressions (6), (7a), and (7b) we

can write g(z) as

it

_ 4 ) l 2 —(3N—2)2 1 2
gz)=m ZIexp —Zti—n*n—e*f’ [(z—tl)(z—tz)—7t3 (z—_... (z—tl)(z_tz)_7t3

i=1

V2

N—1 4
e A G+ (0 —no®)}|"" [[du dn® dndo*do. 8
2

i=1

Thus the average resolvent can be expressed as an eight-dimensional integral given by expression (8).
For further discussion of the average resolvent we introduce the matrix o given by

t 1,/\2 n/2 n*/2
_ t/\2 t 0/2 6*/2 9
—n*2 —60*2 it/2 0 ’
/2 6/2 0 it/ \2
and the matrix
F=z—o0. (10)
The matrix F in the block form is written as
a 2
F= [p S (1
Introducing the graded determinant of F given by’
detg F=det(a — =b ~'p)(detb) ', (12)
expression (8) can also be written as
. — . — 27-1
g(2) =fexp—Trg [02+%ln(z—a)] (z—%) l [1 ——-i—( ——3_;—) 1[(z—t1)(z—t2) -—%3] ]
x [n*n(z — ) +6%6(z— 1) + - (n*0—78%)
V2
1 ity 2 131!
+—-——(z——-—~) [(z—t,)(z——tz)—-—-] 17*770*9]:1[0], : (13)
8 2 2

where

4
dlo] =77 [1dt: dn* dndé*d6.
i=1
From expressions (9)-(11) it can be shown that expression
(13) further can be written as

g(2) =J‘exp—Trg[02+%ln(z—a)]

X%Tr(b—pa‘lz)“d (o] . (14)

Thus the present formulation gives the average resol-
vent in terms of the trace of the lower block of the matrix
(z—o0)" L

Ill. CONCLUDING REMARKS

As a check on expression (8) for the average resolvent
we calculated it explicitly for N = 2 and compared it with its
exact form from the known two-dimensional distribution of
the single eigenvalue. The two expressions checked as they
should. We further calculated the ensemble averages of
quantities like (1/N)Tr(H?) by expanding g(z) given by
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r
expression (8) in powers of 1/z and found that they also

check with their exact values calculated directly using the
distribution of the Hamiltonian matrix elements.

We now compare expression ( 14) with the one obtained
using Lagrangian formalism." In our notation it is given by

g(z) = f exp — Trg[02 + _liV_ In(z — a)]

X—i—Tr(z——a)*‘d [o]. (15)

Since both expressions (14) and (15) are exact we con-
clude that the integral

f exp[ - Trg[a2 + % In(z — a)]Trg(z —0o) d [a]] ,
(16)

must vanish.

We have not been able to find a simple way to prove this
result but have shown it to be true by explicit calculation for
the two-dimensional case. For the general case by expanding
Inand (z — o) ~! in powers of (0/z) we have shown that the
integral is zero for the few lowest powers of 0/z.
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Lastly we remark that both expressions (14) and (15)
give the same asymptotic form of g(z), namely,

g@z)=Q2/N)[z—VZ—=N],

as they should.
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There are N equal particles interacting through a repulsive potential ¥'(r) = 4 /r ( 8> 0) placed
insided the sphere. For 8= 1 (Coulomb case) and for all £ <1, the minimum energy
configuration will have all N particles on the inner surface of the sphere for any integer N. It is
shown that starting from N = 13 and for 8> S, the minimum energy configuration will have
only a fraction of particles on the inner surface while the rest of the particles will hang in the
equilibrium inside the volume of the sphere. As far as S—1 + , the maximum number of charges
that can be held on the surface has an asymptotic N,~ const/( 8 — 1) For const, the gap

6 < C < 8 was found. The theory may be applicable to, e.g., “magic numbers” in small atomic
clusters. Some problems that are not yet solved are listed.

I. INTRODUCTION

Let us place N point charges inside the spherical surface.
If the law of interaction between the particles is the repulsive
Coulomb potential ¥(r) = ¢*/r, then the particles will ar-
range themselves in such a way as to minimize the total po-
tential energy. The resulting configuration of minimum en-
ergy (CME) will change in a quite peculiar jumpwise
manner with each time N increases from N to N + 1.

Apparently, this classical problem was first clearly stat-
ed by Thomson at about 1900 (see, e.g., Ref. 1). Despite
some progress that has been achieved,””’ the precise struc-
ture of the CME is still known only for some few values of N
and in many cases as a plausible conjection only.” No “gen-
eral algorithm” that is equally valid for any integer N was
offered to describe how the CME will change with each in-
crease of N by 1, and this problem is, by and large, still un-
solved. Even for the “simple” cases N = 4, 6, 8, 12, and 20
(numbers of the vertices of five Platonic bodies), two out of
five regular polyhedrons fail to provide the required CME.
While the triad of tetrahedron, octahedron, and icosahedron
(N =4, 6, 12) with triangular faces do indeed provide the
CME,**’ the cube (N = 8) and dodecahedron (N = 20)
are not the minimum energy configurations! This startling
fact, which seems to contradict common sense, illustrates
well that this problem is very far from being trivial.

It is not, however, the purpose of this paper to contri-
bute further to the above problem of purely Coulombic point
charges on the sphere. Here we will consider another, but
related, problem: What will happen with N point particles
inside the sphere if the law of interaction deviates from the
pure Coulombic and can be represented by the potential

Viry=4/7, (D

where > 1?7 This may be of relevance to, e.g., Pauli (ex-
change) forces® or to the “magic numbers” in small clusters,
etc. Here we will, however, consider this problem irrespec-
tive of the concrete (and, perhaps, numerous) physical im-
plications it may have.

Although for =1 (Coulomb case) we do not know
the stable arrangements of points on a sphere for all integers
N, one fact is, nevertheless, certain: No matter how large N
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is, all charges will always be resting on the inner surface of
the sphere once the global minimum of the potential energy
is reached. In contrast to the pseudo-two-dimensional
charge confinement within the circle,® in a truly three-di-
mensional case there will be no “charge ejection” from the
surface into the volume,® since for the Coulombic particles,
such “ejection” would violate the Earnshaw stability
theorem.

However, in the case when the interparticle interaction
is given by Eq. (1), we are no longer bound by the Earnshaw
theorem, which is valid only for 8= 1. It may seem intu-
itively plausible, even without any calculations, that for the
sufficiently large values of S (i.e., for the sharply falling-off
interactions) one may place only a finite number of particles
on the spherical surface. Here we will determine this critical
value NV, as a function of 8. As we will see, for every 8> 1
there indeed exists an upper limit for the number of particles
that can be held on the surface at the most stable (minimum
energy) configuration before the spontaneous ejection
towards the center of the sphere will take place.

Another slightly different, but related, line of develop-
ment was originated by Fejes T6th'® and has gained an inter-
esting literature, of which we will mention here Refs. 11-14.
It is sometime referred to as the “problem of inimical dicta-
tors” and can be put in the following form™'*: “A spherical
planet (without oceans) is governed by N mutually inimical
dictators. How should they place their residences in order to
get as far as possible from one another?”’ Equivalently:
“How can N fuel depots be arranged on a planet so that an
accidental explosion of one of them will least endanger the
rest?” :

When formalized, this problem is equivalent to the find-
ing of the configuration of N points on a sphere that will
maximize the minimum distance between any two points.
Similarly to the previous case, the solution of this problem is
also known only for some specific values of V.

Il. ENERGY OF NREPULSIVE PARTICLES ON A SPHERE

Let us now find an approximate expression for the mini-
mum energy of N particles placed on a surface of a unit
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sphere if the law of interaction is given by Eq. (1). In the
limit N— 0, we were able to obtain a compact and easily
analyzed expression.

Of course, except for N =2, 3, 4, 6, 8, 12, and 20, it is
impossible to place N points fully symmetrically on the sur-
face of a sphere in such a way that all positions are exactly
equivalent. However, it is intuitively clear (and can be ar-
gued more rigorously'?) that for large N, each given point
will be surrounded almost precisely by six others and these
six will form an (almost) regular hexagon around this given
point. The inevitable distortions of the hexagons (which is
necessary for the complete filling) will become relatively
smaller and smaller with the increase of N. To stress that the
sphere can be covered by equal hexagons only approximate-
ly, we will call the above honeycomblike coverage quasihex-
agonal.

The total energy of NV point particles interacting through
the potential of Eq. (1) is

W(N) = 1 NO

l<i<Ej<N R, — R, |# 2
Here R, is the radius vector of the particle i (i = 1,2,...,N)
and @ is the potential created by all other N — 1 particles at
the position of any given one. The second (approximate)
equality becomes exact in the limit N— oo, indicating that in
this limit all particles are equivalent, i.e., ® is becoming the
same for all particles.

Note, also, that for the simplicity we put A = 1 in Eq.
(1). This does not limit the generality of our consideration:
for arbitrary constant 4 and the radius of the sphere R all
following energies have to be expressed in units 4 /R”.
Therefore, the present formulation of the problem is dimen-
sionless: all following results depend only on the value of 5,
regardless of the scale for 4 and R.

Let us assume now that N points form a quasihexagonal
coverage over the surface of a unit sphere in the above given
sense and place, for convenience, one particle at the northern
pole (we call this particle the pole particle). For large N the

nearest neighbor distance is @ = (87/N J3)'/2. The last can
be easily seen from equating the total area (47) to N-S
(S = a*J/3/2 is the area of one hexagon, i.e., the area per one
particle).

To write the expression for ¢ we will use the semicontin-
uum approximation. Examples of its use may be found, e.g.,
in some old papers on the theory of electronic F centers in
ionic crystals (see, e.g., the review in Ref. 15, pp. 188ff). Its
basic idea is to calculate the interaction of a given particle
with some number of close neighbors “exactly,” while re-
placing the sum of all pointwise interactions with all other
particles of the system by an appropriate integral expression.

In the semicontinuum approximation, ® can be written

(2)

as

o=S f s 1 3)

a s a?3/2
The first term is the interaction energy of the pole particle
with six nearest neighbors. The second term represents the
interaction of the pole particle with the remaining N — 7
particles of the system. To calculate the second term, the
sum was replaced by the integral over S'’, which is the entire
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spherical surface with the exception of the small circle of
radius R, around the pole (R,<1). InEq. (3),a%/3/2isarea
per particle (flat approximation) and r is the Euclidean (i.e.,
straight, not spherical) distance from the northern pole to
the floating point. There are seven particles inside this small
circle, so its radius (in radians) can be taken as 2(7/N)'/?
(from 7a%/3/2 = 7R }2).

Within the framework of the above approximation, Eq.
(3) develops into the following expression for the total po-
tential energy of the equilibrium configuration of N parti-
cles:

2 11— - B/2

wan =X 270 (l)l m] + 3N(£V_‘/§) .

2 2-R N 8
(4)

Equation (4), therefore, gives the total energy as an ex-
plicit function of ¥ and 5.

The quality of the approximations of W by Eq. (4) in-
creases with the increase of N. However, even for small N its
quality is surprisingly satisfactory, e.g., for ¥ =12 and
B = 1.5, W= 44056 07, while the exact value is 43.465 18.
The last can be calculated easily if one notes that in the icosa-
hedron inscribed into a unit sphere there are three different

intervertex distances, which are ,/i( 5—5) =1.051462...,

\#(5 ++5) = 1.701 301..., and 2. This leads to the follow-
ing (exact) expression for the total energy of the icosahedral
configuration:

30 30 6

GG—® 1" GG+m]" 7
(5)

It is possible, of course, to extend the “exact” summa-
tion over not just one, but several consecutive concentric
circumferences of nearest neighbors around the pole. This
will reduce the relative weight of the second (integral) term
in Eq. (3) and will make the results more precise. Straight-
forward consideration of the hexagonal flat tile gives the fol-
lowing numbers of points lying on the consecutive concen-
tric circumferences surrounding the pole particle: 6, 6, 6, 12,
6, 6, 12,... . Their corresponding separations from the origin
are a, a3, 2a, a\[7, 3a, 2\3-a, a13,..., respectively.

Taking this into account, Eq. (4) develops into

2 91 -8 1—A8r2 B2
2 (e) )3

W(exact) =

2 28l W 8
6 6 12 6 6
X |6+ +—=+ B
[ (3 2 (N ¥ (1)
12
+ . (6)
(V13)? ]

Here n is the number of particles that are considered
pointwise (i.e., 6 + 6 + 6 + 12 + - 4+ 1; the last 1 relates to
the pole particle). We are still assuming that n<J, i.e., the
circle of radius R, can be seen as arbitrary flat.

As we will see in Sec. III, in the limit N—c, Eq. (6)
leads to a minor numerical correction in comparison with
Eq. (4). This correction does not really affect any of the
following conclusions.
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Ili. THRESHOLD OF THE PARTICLE EJECTION FROM
THE SPHERE

Let us consider the energy of another arrangement of N
particles when one particle has been moved to the center of
the sphere. In this, second, configuration we have N — 1 par-
ticles still on the surface of the sphere. Force acting from the
central particle to any one on the surface will be directed
along the radius of the sphere. Consequently, the central
particle will have no effect on the establishing of the equilib-
rium among N — 1 particles remaining on the surface.
Therefore, the total energy of this configuration can be easily
expressed as

E=WN-1)+N-1. N

The second term in Eq. (7) is the interaction energy of
the central particle with the N — 1 remaining on the surface
(since R = 1 and 4 = 1 each interaction contributes a unit
value).

Suppose now that by changing N or 3 we reached a
certain combination of N and S8 for which the difference
E — W switches from positive to negative. This will mean
that the second configuration took over as the CME, i.e., this
combination of N and 8 will correspond to the reaching of
the ejection threshold. For larger values of N (for fixed B)
or, alternatively, for larger values of S (for fixed N) the
“ground state” may, of course, have more than one particle
inside the volume. Apparently, with the further increase of
B the inner particles will start forming concentric shells
with each new shell appearing at a certain critical combina-
tion of N and B. This gradual buildup of inner shells can,
indeed, be considered as a classical analog of the periodic
filling of atomic shells in Mendeleev’s table or of the shell
model in nuclear physics.

Due to the use of the semicontinuum approximation,
the precision of Egs. (4) and (7), increases with the increase
of V. Using the Eqs. (4) and (7) one can establish the occur-
rence of this “spontaneous ejection” for all N> 14. For each
value of N there is a critical value of S such that for all
B> B..; there will be a spontaneous ejection of at least one
particle into the volume.

As one can find using the values from Table 1 of Ref. 14
the ejection actually should start at N = 13. Our equation for
E — W fails to demonstrate the beginning of the ejection at
N = 13 and the first value for which we see it happening is
N = 14. Of course, the exact minimization with all 13 points
treated explicitly [and not with the approximate equations
(4) and (7)] should exhibit such ejection and could estab-
lish the critical value of £ for N = 13 as well. We are not
performing this cumbersome calculation here.

For a few representative values of the ejection thresh-
olds ¥, Egs. (4) and (6) lead to the critical values of Bgiven
in Table I (the cross-point values of W are given in brack-
ets).

IV. ASYMPTOTICS OF THE EJECTION THRESHOLD
FOR LARGE ¥

From the above figures it is easy to see that for large N
the value of S approaches 1 (from above) and simple analy-
sis suggests that the threshold of ejection N, behaves as

Ny~const/( B — 1)2 (8)
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TABLE L Critical values of B. The cross-point values of W are given in
brackets.

N=14 N=17 N=20 N=40
B =104719 4.8623 3.6945 2.0710
(35.1057) (83.8355) (134.6776) (685.2563)
=100 N =500 N = 1000 N = 10000
B=14789 1.1592 1.104 58 1.028 78
(4691.686) (122 680.2) (494 102.3) (4.9848 E7)

These asymptotics can be obtained from the series ex-
pansions of Egs. (5) and (7) in the limit N— o (or, equiv-
alently, f—1 4 ). In the approximation contained in Eq.
(4) (six nearest neighbors treated pointwisely while the rest
are treated continuously; i.e., n = 7) the value of const in Eq.
(8)is

17272
2 = 6.84775....

const = 16(1—1112)2 [‘f ( )]
9

If, instead, we consider pointwise several circumfer-
ences surrounding the pole particle, the const in Eq. (8)

changes to
9 (\/3)1/2
ft— — =
O T 61 —m2)? [‘/; 87
6 6 6 12
\f \/' f N

LA ” (10)
\f J— J—

(the sum of numerators in the last bracket should ben — 1).
Note, that in Eq. (10) we already took a limit f—1 4+, so
all powers in denominators are square roots instead of /2
as in Eq. (6).

For 1, 2, 3, 4, 5, 6, or 7 circumferences, respectively,
n=17,13,19, 31, 37, 43, and 55. This leads to the numerical
value of const as 6.847 75, 7.507 75, 7.056 54, 7.294 75,
7.162 80, 7.426 58, and 7.228 69, respectively. Although we
did not prove this rigorously, it seems likely that when #n— oo
(but still 7€), the above expression converges to the value
somewhere between 6 and 8, or, possibly, between 6.5 and
7.5. More scrupulous analysis to reduce this gap, of course,
can be performed, but we are leaving it as an open exercise. It
is also, of course, possible to get rid of the flat approximation
and take into account the finite curvature of the sphere’s top.

V. CONCLUSIONS

One may wonder if the ejection always starts (at fixed N
and gradually increasing B) from the jump of just one parti-
cle to the center of the sphere. It seems a likely conjecture
that we, however, did not prove. In the less likely event that
the opposite is true, our asymptote for N, still provides an
upper limit for the ejection from the surface for a given value
of B.

Besides the possible applications for plasma confine-
ment studies, the present model can be of relevance to the
recently emerging physics of small clusters, where the exis-
tence of some “magic” numbers of the enhanced stability has
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been recently observed.'®

We considered here the case of N equal repulsive parti-
cles placed inside the spherical surface. Our analysis, though
approximate, is, nevertheless, dimensionless: all above
numbers depend only on S and do not depend on the radius
of the sphere R or constant 4 in the interaction energy { Eq.
(1) ] between the two particles.

The methodology suggested in the present paper can be
rather straightforwardly refined in several aspects. Here we
will point out several possibilities for further studies: multi-
parametric minimization to account for the formation of the
concentric shells, other surfaces than spherical could be
treated, particles may not necessarily be equal, etc.

One may consider what will happen if the sphere is
gradually deformed into an ellipsoid by contraction (or
stretching) of one of the axes. Less symmetric distortion
may also appear interesting.

It would be interesting also to add the effect of external
fields on the least energy arrangement and critical values of
N. Some preliminary results'’ indicate the possibility of in-
teresting effects in the presence of the electric field.

The charges (or, more specifically, constants 4 ) for var-
ious particles can be assumed nonequal (e.g., one may con-
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sider the case 4, 24, 34,...). The list of unexplored possibili-
ties can, of course, go on and on.
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It is shown that critical long-distance behavior for a two-body potential, defining the finiteness or
infinitude of the number of negative eigenvalues of Schrodinger operators in v dimensions, is
givenby v, (r) = — ((v—2)/2r)*—1/(2rIn P4 —1/Qrinrninr - In, r)?, where
k=0,1,..forv#2and k = 1,2,... if v = 2. This result is a consequence of logarithmic corrections
to an inequality known as the uncertainty principle. If the continuum threshold in the N-body
problem is defined by a two-cluster breakup the results presented generate corrections to the
existing sufficient conditions for the existence of infinitely many bound states.

1. INTRODUCTION

It is well known that the finiteness or infinitude of the
number of bound states of negative energy of a Schrédinger
operator [ — A + V] is controlled by the long-distance be-
havior of the potential.'~ For dimension v+2 a finiteness—
infinitude borderline is set by a falloff ~ ((v —2)/2r)? as
r—w. Not coincidentally, for the quadratic form
(W[ — A+ V1Y), veC g (R*\0) and ¥ being a Kato po-
tential,® the following results hold: (A) the “Uncertainty
Principle Lemma,”>% 2 if ¥(x) > — ((v — 2)/2r)* then

W[ -2+ V])>0; (L.1)

and (B) if, for a>1, r>R,>0, V(x)< —a((v—2)/2r)?
then there exists an infinite sequence {¢,,€ C & (R"\0)},.,,
with disjoint supports, such that

W[ —A+V1y,)<0. (1.2)

From (A) (as proved by Simon' for v = 3) it follows
that if V(x)> —((v—2)/2r)* for r>R,>0, then
[ — A + V] has at most finitely many negative eigenvalues.
Under the assumptions of (B), the “min-max principle”
implies the existence of infinitely many eigenstates of nega-
tive energy.

For v = 2, however, property (A) is trivial and proper-
ty (B) is false!

The original purpose of our investigation was to deter-
mine the critical asymptotic behavior of the potential for
v = 2. The answer is that for v = 2 the critical (in the same
sense as above) long-distance falloff is ~ — 1/(2rInr)2
This follows from appropriately modified versions of (A)
and (B) above.

Nevertheless, it turns out that the v = 2 result is only the
first term of an infinite series of logarithmic corrections for
v =1 and 3 results! This is a consequence of the following
chain of facts.

(i) Under suitable domain restrictions, the unitary op-
erator

T, LYR »~'dr)—»L*R,.dr),
(T, ) (1) =r>=Dy(r),

establishes a unitary equivalence between the radial part of
the two-dimensional Laplacian and the critically perturbed
radial part of the v-dimensional Laplacian:
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Tz(__l_iri)Tz‘l
r dr dr
=T

1 d y—1 d (V_2)2] —1
| m——r = T
[ r”“drr dr 2r v
d* 1
ST w (1.3

More generally, ifa: R, \N,—R_ isC “ anda(7) >Oforall
reR_ \N,, where N, is a finite set, then the unitary operator
U,: LXR,,adr)>L*(R,.dr), given by (U, ¥)(r)
=a"/Y(r) transforms the “radial a-Laplacian” as

Ua(—iia—)U;‘
a dr dr

[~ 3]

- [ aZ a\a) T2
when restricted, for instance, to C & (R, \N, ). (From now
on we shall use a prime to denote derivatives with respect to
r.)

Remark: Since ( — (1/a)(d /dr)a(d /dr)) is a positive
operator, when restricted to C & (R, \N,), (1.3) provides a
trivial proof of the “Uncertainty Principle Lemma.”

(ii) For a class of functions a(r) as above, it is possible

to find a critical potential v, for the a-Laplacian. It is given
by

(1.4)

v, (r) = — 1/(2a(rnh(n))?, (1.5)
where A is a monotonic function satisfying
h'(r) =1/a(r). (1.6)

In fact, denoting by S, the finite set where a or & are
zero, we prove the following lemma.
Lemma I: If yeC & (R \S, ), then

f(¢’)2a dr>f v, Padr.

Lemma 2: If lim h(r) = o, then, given € > 0 arbitrary,

r—oo

(1.7)

there exists an infinite family of nonzero functions, with dis-
joint supports {¢,€ C& (R, \S,)},,, such that

f(¢;>2adr<<1+e)fu,, & adr.

Remarks: Statement (1.7) is a version of an inequality
of Hardy>5®* known as the “Uncertainty Principle Lemma.”

(1.8)
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Lemma 2 says that the constants appearing in the definition
v, are best possible.

(iii) Finally, the whole procedure may be iterated pro-
vided we can find b: R, \N,—R_, with the same assumed
properties of a(r), such that

U,,(—iibi)v,,—l

b dr dr
=U|———a— u-*. 1.9
[ adradr+va(r) a (1.9)

Starting with a = r and iterating the whole procedure we
obtain the result that the potentials

v(r)=—(V_2)2_( 1 )’_...
, 2r 2rinr

1 2
- (2r Inring, 7. Ing,, r) ’
for k>0 if v#£2 and k> 1 if v = 2 are critical; i.e., for some
r>R,>0, (a) if ¥(x) > (1 + €)v,(r) then [ — A + V] has
finitely many negative eigenvalues, or (b) if
l1+e€
(2rinr-Ing,r)? ’

(1.10)

V(x)<v,_,(r) —

forsomee>0,then [ — A + V] has infinitely many negative
eigenvalues.

Notation: For
In,,r=Inr.

Our results amount, in fact, to logarithmic corrections
to the “Uncertainty Principle,” a widely used tool in the
proofs of self-adjointness of strongly singular potentials
(see, for instance, Refs. 2, 7, and 8). In a separate paper® we
discuss the implications of our results to this problem.

Relative to the two-body problem, the N-body problem
presents the extra difficulty of locating the threshold (the
infimum of the essential spectrum of the N-body Hamilton-
ian with center of mass motion removed). However, if the
threshold, as given by Hunziker’s theorem,'? is defined by a
two-cluster breakup we can extend the results of Simon' con-
cerning sufficient conditions for the existence of infinitely
many bound states.

This paper is organized as follows. In Sec. II we prove
Lemmas 1 and 2 and discuss the two-body problem. In Sec.
II1 the N-body problem is briefly discussed.

k>2, ln(k)r=ln ln(k_l)ry and

Ii. THE TWO-BODY PROBLEM: FINITENESS AND
INFINITUDE

A general proof of inequalities of type (1.7) can be
found in Ref. 7. For completeness we present the following
simple proof.

Proofof Lemma 1: Let ¥(r) = g(r)@(r), whereg® = h.
Then

f(zﬁ’)’a dr>f p(g)adr+ 2fgg'¢:<p ‘adr
=f¢2(-g—')2a dr + if«pz)'(gz)'a dr
g 2
Q.E.D.

=Jt/rzvaadr.
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Proof of Lemma 2: (1) Let us first consider the case
a(r)y =1and h(r) =r. Since, for ¢' = r”zq),

, J(@")rdr
Wydr =14+ 2L [, gy,

J- S(@?/rdr v
it is enough to show the existence of an infinite sequence
{p.€e C&(R,.\S,)},,, such that

S(@i)rdr

—_—<

S(@i/rdr
The left-hand side of (2.1) is scale invariant, i.e.,

S )?rdr  s(@p")rdr

S(pi/rydr  S(@*/rdr’
where @, (r) = @(ar). It is, therefore, sufficient to find just
one ge C &5 (R, \S,) satisfying (2.1) and the infinite se-
quence @, = @(a,r) will be generated by suitably choosing

a, to make the supports disjoint. A possible choice of ¢ is,
given in Ref. 11,

(2.1)

0) r<R0’
P("—‘Ro), R0<r<R0+ 1,
@(r) =41, R,+ I<r<R,+ N,

p(l = (r—=Ro)/N),
01 r>RO+ 2Ny

R0+N<r<R0+2N,

with R,>max, s 7 and pe C*(R,) with p(r) =0 if
0<r<i, p(r)=1 if r>} Since limy__ (f(¢')rdr/
S(@?/r)dr) =0, it is enough to take N sufficiently large to
verify (2.1).

(2) Let now ¢(r) = ¢(h(r)). Then

f(fﬁ’)za dr= J(:/J’)zdr
and

f(;ﬁ)zvaa dr = —}fgdr.

Taking then ¢, = ¢, of with 1, as given in part (1) makes
the proof complete. Q.E.D.

Remarks: The assumption lim,_ . A(7) = oo is used to
guarantee that the functions ¥, () = ¢, (k(r)) are not iden-
tically zero. It is not the best possible assumption for the
result is still true if a(r) = r*, n> 1. However, some assump-
tion on a(r) is required as the result is false if a (#) A(r) = 7,
n>l.

We now describe how, starting with a, = r, it is possible
to generate an infinite chain of logarithmic corrections to the
“Uncertainty Principle” as described by Lemmas 1 and 2.

Let a,(r) =a,_,(Mn,,r, n=12,... A straight-
forward computation gives, for all e C (R, \S, ),

Ua (_Lian i)Ua—llll
" a, dr “dr]

1 d d -1
=u, (- Z £ U ,
an_l( a . dran—ldr+va,,_l) a,,_|¢
(2.2)

with U, as given in the Introduction. Therefore, applying
Lemmas 1 and 2 to a, we obtain the following lemma.

n—
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Lemma 3: Let v, (r) be given by

vo(r) = — (v—2)%/47, (2.3a)
1
= , k=12,...
V() =0, (1) — T, Inr)?
(2.3b)
Then (a) for e C 5 (R \S,,k),
[wyars [ v ar 2.4)

and (b) for € > 0, there exists an infinite sequence of nonzero
functions, with disjoint supports, {¢,€ C & (R \S,, )} such
that

2 1+¢€ ]d
fub,. dr<f (am[vk e
2.5)

One of the main ingredients in our discussion below is
the so called “min~max principle”: Let H be a self-adjoint
operator in Hilbert space with quadratic form domain
Q(H), and for n = 1,2,... let

U, (H)= sup inf (Y,HY) , (2.6)
PP — 1 YE[ @y 1]*
141l =1, yeQ(H)

where [@,,..., @, _; ]* indicates the orthogonal complement
of the subspace generated by @,,..., ¢, _, . Then, for each n,
either (a) there are n eigenvalues (counting multiplicities)
below the bottom of the essential spectrum, and 1, (H) is the
nth eigenvalue counting multiplicity in increasing order or
(b) u,, is the bottom of the essential spectrum, and in this
case, i, =M, ., = - and there are at most (n — 1) eigen-
values (counting multiplicity) below u,,.

We are now prepared to state and prove our main re-
sults.

Theorem 1: Let ¥ be a Kato potential in
L*(R"), v=1,2,3, such that for some R,>1and €>0,

14+¢€
Vix)<v, (r) — ,
B <) = T gy r?
k=0,1,. ifv#2, k=12,.. ifv=2

Then, the operator [ — A 4+ V] has infinitely many negative
eigenvalues.

Proof: By the min—-max principle, it is sufficient to exhlb-
it an infinite sequence {¢,€Q( — A + M)},,,, with disjoint
supports, such that (¢,, [ — A + V19, ) <0. Theexistence
of such a sequence follows from Lemma 3. Q.E.D.

Theorem 2: Let ¥ be a Kato potential in L *(R"),
v =1,2,3, such that, for R,> 1, c< 1, and &,

V(X))Cvk(r), if r>R0:

where £k =0,1,... if v#2 and k=1,2,... if v=2. Then
[ — A + V] has at most finitely many negative eigenvalues.
Proof: We first decompose our operator into

—A+V=(—CA+Vy) +(—(1—C)A+ V),

where y,eC¢g, y,(x) =1 if rg<R, 0<y;<1, and
X2(%¥) =1—y,(x).

From a simple application of the min—max principle, it
follows that if both operators 4 = — (1 — C)A + Vy, and
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B = — CA + Vy, (which are essentially self-adjoint in the
same domain and have the same essential spectrum) have
finitely many negative eigenvalues then the same holds for
— A + V' =A + B (see, for instance, Ref. 2, Vol. IV, exer-
cise 129, p. 379).

That the operator 4 has finitely many negative eigenval-
ues is a standard result since the potential ¥y, has compact
support (see, for instance, Ref. 2, Vol. 1V, exercise 20, p.
366). On the other hand, by assumption, B>C
X ( — A + y,v, ) and it is therefore sufficient to show that
the operator — A + y,v, has finitely many negative eigen-
values. If v>2 it is sufficient to consider the operator
— A + y,v, restricted to the subspace 7, of spherically
symmetric functions since in 77 the operator is positive!
The restriction to 7, is given by the operator

1 d d
H _ _ v—l
, [ r"”‘dr dr

For v = 1 we consider the operator ( — d %/dx*)p, + Y2Vs,
with Dirichlet boundary conditions on + R,,
For v = 2,3, a similar argument applies for the operator
H, restricted to %, thus concluding the proof.  Q.E.D.
Remarks: From the proofs it is clear that the finiteness
or infinitude is controlled by the following limits:

+szk(")]

uy, = lim (2r)?V(x),...,

r-—o0

k
u, = lim [(2r H ln(,,,r)z[V(x) —vk_,(r)]} .

r—oo n=1

Indeed finiteness is implied by

Up==up_, = —1,
u,> —1, for some k>0 if v#2,
uyy=-=u_,;=—1,
u,> —1, for some k>»1 if v=2,

whereas infinitude is guaranteed by

Ug=-w=Up_ = — 1,
u, < —1, for some k>0 if v#2,
Uy=w=u_, = —1,
u,< —1, for some k>1 if v=2.

lll. THE A-BODY PROBLEM: INFINITUDE

This section constitutes a sort of appendix of Sec. 3 of
Simon’s work.' Therefore we shall not give all the details and
instead we shall be rather sketchy.

Let us consider a system of N particles, with masses
m;, i=1,.,N,in v=1,2 or 3 dimensions, interacting via
two-body Kato potentials ¥;;(r; —r;). The Hamiltonian
H,, after removal of the center of mass motion,

N - (2p)?
z l'j) - ’
i=1 «M; i<f Z(me )
has the infimum 2 of its essential spectrum given by Hun-
ziker’s theorem':

HN=
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z = min
DD, = ¢
DD, ={1,.,N}

where o, = infimum spectrum H,; here H, denotes the
Hamiltonian of the cluster DC{1,..., N}, with center of mass
kinetic energy removed. If o = o, + 0p, and H;, and H),
have discrete ground states at the bottom of their spectra we
say, after Ref. 1, that the system has a “two-cluster contin-
uum limit.”

It should be remarked that there are a number of situa-
tions for which it can be proved that the system has a “two-
cluster continuum limit,” namely (a) for v = 1,2, a suffi-
cient condition is that  V;(x)d*x <0 (see Ref. 12); and
(b) for v = 3, a sufficient condition is that ¥;;’s are purely
attractive and hold a bound state.'?

Asin Ref. 1, if we are in the two-cluster limit case, suffi-
cient conditions for infinitude can be obtained by reducing
the analysis to that of an effective two-body problem.

Theorem 3: Let V; be Kato potentials that are C * func-
tions on an open set of R¥ whose complement has zero mea-
sure and let T be given by a two-cluster breakup (D,, D,),
with reduced mass p, 5, = (1/Zpm; + 1/Z,p m;) 7"
Denoting by R the relative coordinate of the center of masses
of clusters D, and D,, if the potential

[op, +0p,],

‘I}D,Dz (R) =2upp, z V;(R)
ieD,
JeD;
satisfies the assumptions of Theorem 1, then H, has infinite-
ly many eigenvalues below Z.
Remark: We believe that this theorem holds for Kato
potentials without that extra smoothness assumption.

Proof: Since Hy=H, +Hp +Vpp,
— (1/2up p, ) Ag, where
Voo, = X V(% — %)
ieD,
D,

is the intercluster potential, for ¢ = ¢, ¥, ¢, we have

(%, Hyt) =Ep +Ep + (8, [ — (1/2up5)0 +V]4),

where

V(R) = Z ("/’D, ¢D2’I/ij(xi - Xj)¢D, ¢D,)
oo,
is the effective intercluster potential when the clusters D,
and D, are in their bound states ¢, and ¥, , respectively,
with corresponding energies E, and Ej, .

The proof of the theorem is completed by the following
generalization of Proposition 5 in Ref. 1.

Lemma 4: Let ,, be a bound state of Hp,, a k;-body
system with Kato potentials that are C * functions on an
open set of R* whose complement has zero measure. Let V;
be Kato potentials such that for some y<2 and />1

1
FIE(ZI’ H ln(,,) r)"[ V,j(x) —u_(r) ] <C,

r—o n=1
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v, given by (2.3). Let
7,(R) = f o, (1) 2|, (1) 2

XV (r; (Rryry))d > %~ Dpdvike =Dy,

where r; (R,r,,r,) is the distance between particles ieD, and
Je€D,, in terms of the internal coordinates r,(r,) of D,(D,)
and the distance R between the centers of mass of D, and D,.
Then

e ! v
1im(2R 1 ln(,,)r> [P, (R) —v,_, ]<C,;
n=1

R

Proof: The proof follows by repetition of the steps in Ref.
1, Proposition 5, having in mind that the extra smoothness
assumption on the potentials ensures that the function

plre) = f ¥R+ k=g (1) Pl (0 P

[with integration over all coordinates but ry: r; (R,r,,r;)
= R —r,] decays faster than any power:

suplp(ro) (1 +79)| <

for all n. This is a result by Hunziker.'° QE.D.
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Recent works on the hydrogen-oscillator connection are extended to cover in a systematic (and
easily computarizable) way the problem of the expansion of an R* hydrogen wave function in
terms of R* oscillator wave functions. Passage formulas from oscillator to hydrogen wave
functions are obtained in six cases resulting from the combination of the following coordinate
systems: spherical and parabolic coordinate systems for the hydrogen atom in three dimensions,
and Cartesian, double polar, and hyperspherical coordinate systems for the isotropic harmonic
oscillator in four dimensions. These coordinate systems are particularly useful in physical
applications (e.g., Zeeman and Stark effects for hydrogenlike ions and coherent state approaches

to the Coulomb problem).

I. INTRODUCTION

The connection between the hydrogen atom in three di-
mensions and the isotropic harmonic oscillator in four di-
mensions has been a subject of considerable interest in the
last fifteen years.!~'® Such a connection has been studied in
the framework of four formulations of nonrelativistic quan-
tum mechanics. More precisely, the connection between the
R? hydrogen atom and the R* harmonic oscillator has been
worked out in (i) a (Schrodinger) partial-differential-equa-
tion approach,’® (ii) a (Feynman) path-integral ap-
proach,’* (iii) a (Weyl-Wigner-Moyal) phase-space ap-
proach,'® and (iv) an (Heisenberg-Born-Jordan) operator
approach based on an investigation of the Pauli equations via
Schwinger calculus.'® In most of the works in Refs. 1-16, the
so-called Kustaanheimo-Stiefel transformation'” (that cor-
responds to the Hopf fibration S3/S! = S?) is used in the
derivation of the connection between the R* hydrogen atom
and the R* harmonic oscillator. We note in passing that the
extension to higher dimensions of this nonbijective canoni-
cal transformation is limited to a transformation (that corre-
sponds to the Hopf fibration S /S ? = $*) from which it is
possible to reach a connection between the R® hydrogen
atom and the R® harmonic oscillator. In contradistinction, it
might be interesting to note that the work in Ref. 16 could be
extended without any a priori dimensional limitation.

Going back to the R*-R* hydrogen-oscillator connec-
tion, it is to be emphasized that this connection is of para-
mount importance in the study of atomic systems subjected
to electric and/or magnetic fields (cf. Refs. 18-21). In this
respect, the problem of a hydrogenlike atom in an electric
field or a strong magnetic field can be transformed, by means
of the Kustaanheimo-Stiefel transformation, into the prob-
lem of a four-dimensional isotropic oscillator presenting an-
harmonicity of degree 4 or 6, respectively.’® Therefore,
many calculations arising in the Zeeman and Stark effects
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for the hydrogen atom may be conducted in the oscillator
representation. It is thus desirable to have the wave func-
tions for the hydrogen atom expressed in terms of wave func-
tions for the corresponding four-dimensional oscillator.

As is well known, the Schrodinger equation for the hy-
drogen atom in R is separable in four coordinate systems,
viz., the spherical, parabolic, spheroconical, and prolate
spheroidal coordinate systems.?>~>* The spherical and para-
bolic coordinates are probably the most important as far as
physical applications are concerned. On the other hand, the
Schrodinger equation for an isotropic harmonic oscillator in
R* is separable in numerous coordinate systems. In the qua-
ternionic (or Euler-angle) coordinates (R, 6, ¢, ¥), defined
on R* through

“1=Rcos—§—cos¢;¢, u2=Rcos—‘29—sin¢T+¢,

u3=Rsin%co ¢;¢, u,=R sin—Z—sin‘p;'/' ,

the wave functions for the four-dimensional oscillator as-
sume an especially simple form.! In addition, the passage
formulas between the latter wave functions and those for the
hydrogen atom in spherical coordinates are trivial in the
sense that each hydrogen wave function corresponds to a
particular oscillator wave function.’

It is the aim of this paper to obtain other passage formu-
las in the case of the discrete spectrum of hydrogen. For
physical purposes, attention will be drawn to spherical and
parabolic coordinates for the hydrogen atom and to Carte-
sian, double polar, and hyperspherical coordinates for the
four-dimensional oscillator. The passage formulas are devel-
oped in Sec. V. We begin in Sec. II with the Kustaanheimo-
Stiefel transformation and continue in Sec. III with the wave
functions for the discrete spectra of the hydrogen atom and
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the harmonic oscillator in the coordinate systems under con-
sideration. We close this paper in Sec. VI with some comput-

ing aspects.

Ii. THE HYDROGEN-OSCILLATOR CONNECTION
A. The KS transformation
We start from the R*—R? transformation defined by
x,(=x) = 2(uu; — uyu,) ,
X, (=y) = 2(uuy + uyu,) , ()
xy(=z) = u} +ub —ui —ul,
O=wu,du, —u,du, —u,du; +uydu, .
Equations (1) constitute, indeed, a simple rewriting, up to
my(onx;, i=1,2,3)and 7, (onu,, a=1,2,3,4) permu-
tations, of the transformation used by Kustaanheimo and
Stiefel'” in their work on the regularization of the three-di-
mensional (classical) Kepler problem. Following many
authors, we refer to this transformation as the KS transfor-
mation. The KS transformation is a transformation of mag-
nitude 2 since
r=2 42 +x)2 =2 + ik 4wk +ui=u?. (2)
Furthermore, for any function f(x;) of the variables
x; (i =1, 2, 3), at least twofold differentiable, we have
Asf(x)=(4r)""A f(x,(u,)),
3)
Xf(x:(u,))=0,
where A; and A, are the Laplacian operators in three and
four dimensions and where
X=u231—u132—u433+u334 (4)

is the infinitesimal operator of a Lie subgroup of type U(1)
of the group SO(4) that leaves the form u? + u3 + u? + u]
invariant. Note that the introduction of the constraint condi-
tion X =0 into the Lie algebra so(4) produces an under
constraint Lie algebra, which is isomorphic toso(3) (cf. Ref.
16).

B. Application to the Schrédinger equation

We now consider the Schrédinger equation
— (P /u)AY + VY = EY (5)

for a (one-particle) problem corresponding to an arbitrary
potential V. The KS transformation allows converting this
equation into the following:

— J(R/p)AY — SEPY = — 42VV (6)

accompanied by the constraint relation
X¥=0. (7N
In the particular case of a hydrogenlike atom with reduced

mass x and nucleus charge Ze, we have the spherically sym-
metric potential (energy)

V= —2Ze/r, (8)
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so that Eq. (6) reduces to the Schrodinger equation for an
isotropic harmonic oscillator in four dimensions, the energy
of which is ¢,

e=4Zé, 9
and the angular frequency of which is w given by
—4E=§,ua)2. (10)

This four-dimensional oscillator is an (ordinary) attractive
oscillator for the discrete spectrum (E <0) of the hydrogen
atom, a repulsive oscillator for the continuous spectrum
(E >0) of the hydrogen atom, and collapses into a free parti-
cle for the zero-energy point (E = 0) of the hydrogen atom.
Equation (7) bears a nice interpretation from a group-theo-
retical point of view. In fact, the introduction of the con-
straint condition X = 0 into the Lie algebra of the noninvar-
iance group Sp(8, R) associated to the four-dimensional
oscillator produces an under constraint Lie algebra, which
turns out to be isomorphic to the Lie algebra of the group
SU(2,2). This result has been independently obtained'®
from a boson realization of the Pauli equations correspond-
ing to the whole spectrum (£ <0, E> 0, and E = 0) of the
hydrogen atom. It provides us with a further way to under-
stand the relevance of the group SO(4, 2), locally isomor-
phic to SU(2, 2), for the hydrogen atom problem.

We shall devote the rest of this paper to the bound states
of the hydrogen atom. In the situation where E < 0, the angu-
lar frequency @ is indeed quantized as can be seen from Eq.
(10). More precisely, for the discrete spectrum of the hydro-
gen atom, we obtain

po _,1 pZe
# n #'

a relation that will prove useful in Sec. V.

neN — {0}, (11)

lll. R* HYDROGEN ATOM

We give here the wave functions on L 2(R?), in spherical
and parabolic coordinates, associated to the energy level

E=E, = — (a*/2)(#/u) ,
(12)
a = (1/n) (uZe*/#*)

of the discrete spectrum of the (three-dimensional) hydro-
gen atom. The notation used is a self-explanatory hybridiza-
tion of the ones in Refs. 22-25.

A. Spherical coordinates

In the (conventional) spherical coordinates (7, 6, ¢),
we take the n*> wave functions ¥, ,,, corresponding to the
level E, in the form

‘llnlm= nlmplyvlm(0,¢)e—P/2Li’:ll(p), (13)
where
Noim = (= el ey =L DL,
nlm ( )[( ) 2n[(n+1)|]3
(14)

p=2ar, I=01,..,n—1, m= -1 -1+1,..,].
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In Eq. (14), ais an arbitrary phase. (Note thatg = 1 in Ref.
22 and a = n in Ref. 25.) We adopt the phase convention of
Condon and Shortley for the spherical harmonics Y;,, and
the definition of Ref. 22 for the associated Laguerre polyno-
mials L 2.

B. Parabolic coordinates

In the parabolic coordinates

the n? wave functions ¥, ,.m corresponding to the level E,
with
n=p +p,+|ml+1,
(16)
PN, p,eN, meZ
assume the form
mezm = NPlpzm (é‘ 77) |m|/2eim¢e —alE+m/2
XL im (@ LT 1y (@) - A7)

We leave the normalization constant N, as

pP\p2m
—(_1\¢ — 172, |m| + 3/2
Nmzm = (—1)°(nm) a

X (Pl!Pz!)l/z[(Pl + ]ml)!(p2 + Iml)!] -2
(18)

where b is an arbitrary phase. [ Note that b = 0 in Ref. 23
and b =p, + (m — |m|)/2 in Ref. 25.]

IV. R* HARMONIC OSCILLATOR

We give here the wave functions on L ?(R*), in Carte-
sian, double polar, and hyperspherical coordinates, associat-
ed with the energy level

e=e, = (n, +2)A(#H/u),

(19)
A =puw/h, n,eN,
of an isotropic harmonic oscillator in four dimensions.
A. Cartesian coordinates
In Cartesian coordinates, we know that
n, =n1+n2+n3+n4,
(20)

n,eN, a=12734.

For n, fixed, the C, ; wave functions ¥, , ,.,, for the R*
oscillator are easily deduced from the well-known wave
functions for an isotropic harmonic oscillator in one dimen-
sion. In detail, we have

L 4 =N,

nyn NN, n,n,nan,

4 2
I[ e “2%H, (A YVu,), @D

a=1

J

where

4
H (Z"ana!) —1/2 .

a=1

(22)

_A
nnynan, ;
In Eq. (21), H, stands for a (conventional) Hermite poly-
nomial.

B. Double polar coordinates

We may look for the wave functions of the R* oscillator
in terms of wave functions of a pair of isotropic harmonic
oscillators in two dimensions, each of the wave functions of
the two R? oscillators being expressed in polar coordinates.
Following standard procedures (as, for example, the one
connected to Whittaker invariants®®?7), we obtain for the
first R? oscillator (variables: u,, u,) the eigenstates

€(1) = 2k, + |m,| + DA(#/u) ,

Vm, = Nim, [y + i sgn(m;)u,]"™! (23)
Xexp[ — (4/2)(ut +u3) |LLM,
X[A(] +ud)],
where
Nk =7T_1/2/1 (|m,|+1)/2(kl!)l/2
X [(ky+ |m 1], (24)
k€N , meZ .
Remark that the polar coordinates
o= (2 +u2)'?, @, =arctan(uy/u,) (25)

are easily seen to occur in Eq. (23) especially because

[u, + i sgn(m,)u,]'™! = plmlem™e: | (26)

Similar results are obtainable for the second R? oscillator
(variables: u;, u,) owing to the substitutions

e(1)—€(2), k—k,,
Uy—ly

Pr—>P2 -

my—m,,
27)

U —ris,

P12

As a result for the R* oscillator, the C, ; wave functions
Wy i k,m, corresponding to thelevel €, = e(1) + €(2) with

n, = Zkl + 2k2 + |m1| + |m2| y (28)

can be written down as

Yiemiegm: = N, Niym, €XpLE(m @1 + mop;) ]Pllm'lplzmz‘exl)[ —(1/2)(p} +p) L L’,"i m,| (Ap1)L L’,"il [, (4p3) . (29)
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C. Hyperspherical coordinates

In the hyperspherical coordinates (u, ¢, 6, ¢) defined
through

u, = u sin ¢ sinf cosg ,

u, =usin Ysin fsin @, (30)

u, =usinycosd,

u,=ucosy,
the wave functions of the R* oscillator may be obtained from
standard procedures (as, for example, the one connected to
Whittaker invariants®®?”). This yields the following eigen-
values:

e=(N+2K+1)A(#/p), NeN-—-{0}, KeN.
(31

Further, the C :Z +3 wave functions W, »x, corresponding
to the level €, = € with

n=N+2K-1, (32)
are found to be
Ynrk = Nurnx" ™ Yorae (4, 6, @)
Xe—(i/:)uszJrN(/{uz) , (33)
where
Nyww =222 @+ D2 [(K + )~
(34)

L=0,1,.,N—-1, M=—-L, —L+1,..,L.

We adopt the definition of Refs. 28 and 29 for the hyper-
spherical harmonics Yy, ,, appearing, in Eq. (33).

V. TRANSFORMATION FORMULAS

We are now in a position to develop any wave function
(in a given system of coordinates) of the hydrogen atom as a
linear combination of wave functions (in a given system of
coordinates) of the four-dimensional oscillator. In a formal
way, we may write

¥ (hydrogen) = Z I [xxxxxxx] ¥ (oscillator) ,

(35)

where the expansion coefficients 7 [xxxxxxx] depend on the
systems of coordinates chosen for the hydrogen atom and
the harmonic oscillator. Each coefficient 7 [xxxxxxx] is
thus a function of seven quantum numbers: three for the
hydrogen and four for the oscillator. For a given choice Lf

2|MINp|p2mp|1m‘p|2mleim‘pL 1|:.n—|+— |} (’{P% )L [‘)':I—]F |m]| (/1P72' )

= 3 T ppamkim ks Ny N, pl™ ol e emoLim] (ALY, (Ap3)

kymkym;

after making use of Egs. (25), (27), and (37). The decisive
point is to realize that

=@, + @, + 2km, keN, (39)
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the systems of coordinates both for the hydrogen atom and
the four-dimensional oscillator, the calculation of the expan-
sion coefficients J [xxxxxxx] may be achieved in two steps.
First, we apply the KS transformation on ¥ (hydrogen) in
order to produce a function on L 2(R*). Second, we treat Eq.
(35) as an equality in L 2(R*) and use the orthonormality
property of ¥(oscillator) to obtain I [xxxxxxx]. In all
cases, the latter equality may be simplified in view of the fact
that

a=A/2 or n,+2=2n, (36)

as can be seen from Egs. (9), (11), (12), and (19). Further-
more, the definitions and relations

t,=A"u,, a=1234,
tP=ti 4+t 4+t +137,
ab=A(u} +ul) =1t} +13,
an=A@; +u}) =13 +1},
alf+1)/2=(A/2)(} +u5 + 4} +u})
=A/2)P= A/ r=42,

Ep =42 +ud)(ud +ud)

= (/A (] +13)(t5 +11),
cos@=(t2+4+t2—t2—t2)/1?,
€= (t+ity) (6 +it)/[ (2] +13) (] +¢ )],

37

which arise by applying the KS transformation to the para-
bolic and spherical coordinates of R?, are also of importance
for handling the obtained equality. Finally, it is to be noted
that in Eq. (35) the sum over the four quantum numbers for
the oscillator is strongly limited by Eq. (36).

A. R4 double polar—R3 parabolic passage formulas

We expect the result for the coefficients
I [pp,mk,mk,m,] to be very simple (although the proof
lies on a nonstraightforward point) since the Lie algebra of
SU(2) ® SU(2) enters the problem of the hydrogen atom in
parabolic coordinates®® and, on the other hand, the four-
dimensional oscillator in double polar coordinates clearly
exhibits an SU(2) @ SU(2) symmetry. By introducing Egs.
(17) and (29) into Eq. (35), we end up with

(38)

'a result contained in Egs. (25), (27), and (37) and in agree-

ment with an alternative derivation by Chen and Kibler.3!
By combining Egs. (38) and (39), we get m; =m, =m
from ordinary Fourier analysis. Then, the orthogonality
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property of the associated Laguerre polynomials shows that  as those that arise using (rotational) parabolic coordinates

k, =p, and k, = p,. As a final result, we have (see also Refs. 8 and 31).
1 [ppomkym k,m,]
= 8(ky, p1)8(ky, p2)6(my, m)S(my, m)

lemlem/(Nm N, (40) B.R4 Carteslan'—>R3 parabolic passage formulas .
o112 a2 The coefficients I [p,p,mnn,nin,] are obtained
I [ppympympom] = (— 1)°27 'm*(a/n)"*. straightforwardly by introducing Eqs. (17) and (21) into
In other words, the wave functions for the hydrogen atom in Eq. (35). It is enough to use Egs. (36) and (37) and the
the SU(2) ® SU(2) oscillator basis are essentially the samf:I orthogonality property of the Hermite polynomials to get

+ 0 ®4
I[pp,mnnnyn,] =2~ " _sz‘pszn,nzn,n, J- (¢, + i sgn(m)t, 1" [2; + i sgn(m)z,]™

— ®

4 2
XL i @F + L 03 +23) [ e "°H,, (£,)dt, (41)

a=1

r
Equation (41) can be rewritten as We thus have the selection rules that n, + n, + |m| and

I [pp,mnn,nyn,) n; + n, + |m| must be even integers. Consequently, we re-
—2 . —|m|—2 coverthatn, ( = n, + n, + n; + n,) must be an even integer

=2""a Nooim N, [cf. Eq. (36)], a well-known result.” In addition, we can

xXJ [pymnn, W [p,mnsn,], (42)  derive the selection rules
where the integrals J are defined via n,+n,=2p, + |m|, ny+ng=2p,+ |m|, (45)
+ 0®2
= 1 [m]
J [pmab ] = f_ 3 [x +isgn(m)y] which give back the previous selection rules.

. Finally from Eq. (41) we obtain the symmetry relation
XLLM-J i (x2 +y2)e— (x* +y°)

XH, (x)H,(y)dxdy, (43)
PeEN, meZ, acN, beN.

By using parity considerations, we may prove from Egs.
(41)-(43) that

Ipp;mnnynyn,] =0,

( [pwpomninynsn /N, 0 ) *
=1[pp, — mnnnsn /N, o, - (46)

C. R4 Cartesian—R3 spherical passage formulas
The coefficients I [n [ mn n,nyn,] immediately follow
by combining Eqgs. (13), (14), (21), and (35)—(37) and by
for (44)  ysing the orthogonality property of the Hermite polynomi-
ni+n,+|m| or n;+n,+ |m|=oddintegers. | als. This leads to

+ o®4
I[nlmnln2n3n4] = (2(1)— NnImNn,n,n,n. J Li:j-ll(t% +t§ +t§ +ti)

4 2
><YI(SIm(tls b, ts, 1) H e_taH,,a(ta )dta . (47)

a=1
The special function YKS,,, in Eq. (47) is defined in the following way. Let YKS,,, (u,, u,, us, u,) be the function obtained
by applying the KS transformation to the R* harmonic polynomial Y. (6, @). Clearly, YKS,,, (u,, ty, u3, u,) is an R*
harmonic polynomial of degree 2/ (cf. Ref. 32). In Eq. (47), we then have

YKS,,, (t1, t ts, t) = A 'YKS,,, (uy, 15, t3, t4) (48)
that stands for the image of (2 2)7'Y,,, (6, ) via the KS transformation.
By using parity considerations, we can show from Eqgs. (37) and (47) that
I[nlmnn,nn,] =0,
for (49)
n,+n,+m or n;+n,+ m=oddintegers .

Therefore, we obtain the selection rules that n, + n, + m and n, + n, + m must be even integers, from which we recover
again that n, ( = n, + n, + n, + n,) must be an even integer [cf. Eq. (36) ].
Finally, from Eq. (47) we obtain the symmetry relation

(I [n Imn1n2n3n4]/anm)* = ( _— l)mI [fll— mnln2n3n4]/Nn,_m . (50)
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D. R4 hyperspherical—>R3 spherical passage formulas

A preliminary relation involving the coefficients
I{nIm N L M K] can be set up by introducing Eqgs. (13)
and (33) into Eq. (35) and by using the orthonormality
property of the hyperspherical harmonics. This yields

Q) VDA Im NLMIN, LY (%)

=S I{nimNLMEK Nyt LY (2%, (51)
K

where the integral 4 is defined by

A[lmNLM]

21
=frf Youune (#, 6, ) *u 2
0 0 0

X YKS,,, (4, 4y, 43, u,)sin® Y sin 0 dy do dgp .
(52)

In Eq. (52), u~%¥YKS,,, (4, u,, us, u,) should be under-
stood as a function of the angular variables ¥, 6, ¢ [cf. Eq.
(30)]. Thus, 4 is a basic integral of a completely angular (or
geometrical) nature. Next, we apply to Eq. (51) the ortho-
gonality property of the associated Laguerre polynomials to
obtain

I[nimNLMK]
= Q&)Y V4N, /Nnrsk)
XA[ImNLMIR[nINK], (53)
}

E. R4 hyperspherical—R3 parabolic passage formulas

where the radial integral R is given by
R[nINK]=KI[(K+N)!]3
X[ L veLiisi
0

Xx(21+l+N)/2e—-xdx. (54)

The last point amounts to use some trivial properties of the
functions YKS,,, (cf. Ref. 32). As a consequence of the
development of u~?YKS,,, in standard hyperspherical
harmonics Yy, ,, , we may prove that A[/m NL M] =0if
N#21+41. The introduction of the selection rule
N=2I/4+1 into Eq. (54) shows in turn that
R[nINK] =0ifK #n — ] — 1, and we thus have a further
selection rule, viz., K = n — I — 1. The latter two selection
rules ensure that we obtain

IniImNLMK)
=6(N, 21+ 1)6(K,n—1—-1)
X (2a) (Nyim/Nyrux)AImNLM], (55)
sinceR[n, ,2I4+ 1,n—-1—-1]=1.
Finally, we note the symmetry relation
{{[nImNLMK]/N,,)*
=(—1D:t-"M+*"[[nl—mNL—-MK]/N,,_,..
(56)

The coefficients I [p,p,;m N L M K] can be obtained by combining Eqgs. (17), (33), and (35). We formally obtain

I[ppym NLMK ] =2"(2a) = ¥+2ml+972y

+ 0o ®4
P:szNNLMKf [z, +isgn(m)t2]|"'|L,|,'l"L|m| (t% +t§)

X [t +isgn(m)t4]|'"'L[|,'z"L|m‘ A3+t +13+15 +1 )N VY, (4, 6, Pp)*

XLE @3 +15+15 +el)exp[ — (¢ +¢] + 123 +13)])dr dtydty dey,

(57)

where V= 'Y,, ., (1, 6,¢) should be considered as a function of the dimensionless variables ¢,, t,, £,, ,.

E. R4 double polar—R? spherical passage formulas

The coefficients I [#n I m k; m, k, m,] can be obtained by combining Egs. (13), (29), and (35). We formally obtain

+ o ®4
Ilnlmk,m, k,m,] = (2a) = {Im™i+Im YN 1 m N, m, N, m, J. [z, —isgn(m)e, )™ 'L ™ mg (E1 +123)

X [; — i sgn(my)e,]"™IL |

2+ |my

I(t§ +ti)YKS,m(t,, Iy 13, t4)L5{++11(t% +t§ +t§ +t§)
Xexp[ — (¢} + 13 +13 +¢2)]dr drdt dt, .

(58)

Arguments similar to the ones used in Sec. V A lead to the selection rules m, = m, = m so that Eq. (58) may be simplified in

view of

Inimk m k,m,] =8(m;,m)6(m,, m)I[nIlmk mk,m].

(59)

Equations (58) and (59) may be worked out to lead to a symmetrical form for the coefficients 7 [n I m k, m k, m]. Indeed, by
transforming the relevant fourfold integral into a twofold integral, we have
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Inlmk mk,m)=2"1m=172—Iml=2( _ 1ym[(2] + DU =m)/U+m)M'N, Ny (yNo K [0 Imk ky)

(60)
with
w0 ®2
Knlmk k] =f )™ HIL L GAL 0
0
XPPI(X2 =y )/ (P + )L P+ ) (P + ) e~ X+ dx dy, (61)

where P[" is an associated Legendre function.

VI. CLOSING REMARKS ON COMPUTING ASPECTS

To close this paper, we present some developments con-
cerning computing aspects of this work.

A. A MACSYMA approach

The expansion coefficients / [xxxxxxx] for low values
for the seven quantum numbers corresponding to a given
transformation can be easily calculated with the help of the
algebraic and symbolic programming system MACSYMA. We
have written a program to handle all the basic integrals ap-
pearing in this paper. Therefore, the expansions of the type
of Eq. (35) can be computer generated in an algebraic (rath-
er than numeric) fashion. By way of illustration, we consider
the development of the spherical wave function ¥,,, with
n =3, ]=2, and m = 0 for the hydrogen atom in terms of
Cartesian wave function ¥,, ,, , . for the harmonic oscillator
(cf. Sec. V. C). (The corresponding expansion coefficients /
[320m,n,n,n,] are far from being easily obtainable by
hand.) Our program gives the expansion

\11320 — 2—33 — 1/271/2611/2[\1’4000 + \I/0400 + \1’0040
+ \II0004 - 23/23 B 1/2(\II2020 + \1’2002 + \110220
+ Wo0r —27 Won00 — 27 'Woepn) ] - (62)

We note that the selection rules (49) are satisfied in Eq.
(62). [It should be realized that the nonobservation of the
selection rules (44) and/or (49) in some recent works has
lead to errors.] The reader interested in other expansions
may write to the authors.

B. Basic integrals

The integrals [see Egs. (43), (47), (52), (57), (58),
and (61) ] encountered in this paper are central to the theory
of special functions. As a first example, the angular integral
A [see Eq. (52)] corresponds to the development of YKS,,,
in terms of hyperspherical harmonic polynomials u” '

X Yy Asasecond example, Eq. (43) corresponds to con-
nection formulas between the product of Hermite polynomi-
als H,(x)H,(y) and the Laguerre polynomial
L) . (x* +y%), formulas that are (more or less) known
both from a physical® and mathematical®* viewpoint.
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C. Relations between expansion coefficients

Finally, we note that the various expansion coefficients
I[xxxxxxx] discussed in this paper are not all independent.
As a matter of fact, the spherical and parabolic wave func-
tions in L *(R*) for the hydrogen atom are connected by a
relationship of type

\pPlpzm = 2 (n lml-plpzm)\ljnlm ’ (63)

where (nlmlpp, m) is essentially a SU(2)DU(1)
Clebsch-Gordan coefficient (cf. Ref. 25). Consequently,
given a coordinate system for the four-dimensional oscilla-
tor, the corresponding expansion coefficients /[ p,p,mxxxx]
and I [nlmxxxx] are related by

I [ppymxxxx] =Y (nlm|pp,m)I [nimxxxx] , (64)

which is the relation dual to Eq. (63).

We close this paper by noticing that nothing has been
said on the use of the dynamic symmetry group O(4) for
deriving the Green’s function for the Coulomb field in the
spirite of the works initiated by Schwinger®* and further de-
veloped by Bander and Itzykson.® The reader should con-
sult Refs. 9-14 for developments along this line.
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Stochastic mechanics is a probabilistic description of quantum systems in terms of stochastic

differential equations. Davidson [M. Davidson, Lett. Math. Phys. 5, 523 (1981) ] and de Falco,
De Martino, and De Siena [ D. de Falco, S. De Martino, and S. De Siena, Lett. Nuovo Cimento 36,
457 (1983) ] have introduced momentum variables into this scheme. In this paper a discussion of
this attempt is presented and some difficulties concerning the physical interpretation are pointed

out.

I. INTRODUCTION

The theory of stochastic mechanics'™ provides an alter-
nate mathematical—and possibly physical—representation
of nonrelativistic quantum mechanics. This probabilistic
quantization procedure has as its basic underlying math-
ematical object a diffusion process associated to the motion
of a quantum mechanical particle. The elevated role of posi-
tion (or, more generally, of any configurational variable) is
in contrast to the L ? formalism of conventional quantum
mechanics, where one treats space and momentum coordi-
nates on the same footing. It seems of interest to understand
whether stochastic mechanics allows for an analog of the
canonical transformation theory of classical and quantum
mechanics.

Guerra and Morato® have attempted to approach the
position-momentum complementarity in the stochastic
frame and managed to deal with the coherent states of the
harmonic oscillator. By exploiting the symmetry (in posi-
tion and momentum) of the Hamiltonian they could con-
struct diffusions associated to momentum. Their strategy,
however, does not seem to be capable of generalization to
other potentials.

The question of momentum is treated in a completely
different fashion by Davidson® and de Falco, De Martino,
and De Siena.’” They make use of the asymptotic behavior of
the trajectories in the stochastic mechanics of a free particle.
In this way one is able to define momentum random varia-
bles for a general class of potentials, and their distributions
coincide with those of quantum mechanical momentum.

The concern of the present paper is to examine this im-
plementation of momentum in stochastic mechanics. The
momentum process is found to be non-Markovian. It reveals
some serious unphysical features: First of all, the momen-
tum variables do not meet the requirement that momentum
ought to have an operational meaning in physics. Second,
the time derivative (if it exists) does not yield force. Further-
more, the definition is so implicit that it is of no use in the
derivation of uncertainty relations in stochastic mechanics.

The organization of the paper is as follows. In Sec. I the
basic notions of stochastic mechanics are introduced. Then
the momentum process is defined in Sec. III, accompanied
by the example of the harmonic oscillator ground state in
Sec. IV. The phase space formulation of quantum mechanics
is reviewed in Sec. V. In Sec. VI we analyze the physics be-
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hind the momentum process and we conclude in Sec. VII.

Il. CORRESPONDENCE BETWEEN STOCHASTIC
MECHANICS AND QUANTUM MECHANICS

The formulation of stochastic mechanics goes back to
Nelson.' This section is devoted to a brief review of the corre-
spondence between stochastic mechanics and conventional
quantum mechanics. For a detailed exposition we refer to
Refs. 14,

Let us consider a point particle of mass m moving under
the influence of a potential ¥(x). In stochastic mechanics
the kinematical aspects of the motion are described by a
Markovian diffusion (with values in the configuration
space) solution of the stochastic differential equation

d&, = b(&,,1)dt + dw,, (n
where w, denotes the Wiener process with variance 2v (inde-
pendent of §,). The probability density p (x,¢) of the process
&, connects the forward drift b(x,?) to the backward drift
b, (x,1):

b, (x,t) = b(x,t) —2vV Inp(x,1). (2)
The drifts simply represent the mean forward and backward

velocity of §,, respectively. The osmotic velocity u(x,¢) and
the current velocity v(x,?) are defined by

u(x,t) : =4[b(x,t) — b, (x,6)] =vVInp(x,), (3)
v(x,t) : =4[b(x,t) + b, (x,8)]. 4)

The dynamics has to specify the influence of the poten-
tial ¥(x). This can be accomplished, e.g., by the Guerra—
Morato variational principle.® (An enlightening presenta-

tion of this principle can be found in Ref. 9.) It relates the
solution of the Schrédinger equation

7 ’
~Ea+ V(x)]t//(x,t) (5)

m

. O

ifi :9_t Y(x,t) =
to the diffusion &,, where # is Planck’s constant divided by
27, and one finds

u(x,t) = (Ai/m)Re V In ¢(x,2), (6)

v(x,t) = (Ai/m)Im V In ¥(x,?). N

The diffusion constant v turns out to be equal to #/2m, and
the probability density of the process is related to the (nor-
malized) solution of the Schrodinger equation by

p(x,t) = |[(x,0)]2 (8)
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lil. MOMENTUM PROCESS

In stochastic mechanics there are several stochastic pro-
cesses whose mean values coincide with the expectation of
the quantum mechanical momentum operator P. For in-
stance, we can take the forward and backward drifts or the
current velocity:

E[b(&, )] =E[b, ()] =E [v(§,1)]
= <¢(',t),P¢(°’t)>- (9)

But none of these random variables has the same distribution
as the operator P. Already their variances differ from those
of P.

The definition of momentum random variables by Da-
vidson® and de Falco, De Martino, and De Siena’ is based
essentially on work by Shucker,'® who has investigated the
behavior of the trajectories of the diffusion £ / corresponding
to the free Schrédinger equation (i.e., in the absence of any
potential).

Shucker showed that in the free case the limit

lim (m&4/T)

T w
exists pointwise almost surely (under moderate technical
assumptions) and has probability density equal to the quan-
tum mechanical momentum distribution. Of course, in the
free case, the momentum distribution is time independent.
Incidentally, Shucker’s result has been generalized to the
interacting case. Biler'! considered the one-dimensional
case, and the case of three dimensions was treated by Serva!?
for central potentials and by Carlen'® for potentials of the
Kato—Rellich type.

Now we consider a situation where a potential is pres-
ent. Let £ be the corresponding position process. Consider
also the solution ¥/* of the free Schrédinger equation with
initial condition at time # being given by the interacting wave
function ¢ at time #:

(10)

P (xt) = P(x,0). (1)
This leads to the free position process £ ** given by
dES = b (EL AT + dw’y, (12)

where w/* is a Wiener process with variance 2v (indepen-
dent of £ /7).

In particular, we can impose Davidson’s® “by fiat” as-
sumptions

§{'t=§t’

wh = wy.

(13a)

(13b)

On account of (13a), the process £ ** can be thought of
as being “tangent” to the process £ at time ¢.

Following Davidson® and de Falco, De Martino, and De
Siena,” we define

m, i = lim (m&4Y/T).

T+

(14)

According to Shucker’s analysis this limit exists, and it has a
probability density equal to the momentum distribution of
the quantum state ¢¥(-,¢).

Thus, in the case of arbitrary potential, a random vari-
able has been constructed whose distribution coincides with
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the momentum distribution in quantum mechanics. This
property, of course, if not sufficient to define 7, uniquely,
e.g., we could have taken the limit 7— — oo in the definition
of 7,. The resulting random variable has the same distribu-
tion. According to a result of Nelson,®> however, the two
limits differ.

We want to elaborate on the last point a little further.
Nelson considered a Gaussian wave packet under the free
evolution and computed the correlation matrix of the initial
momentum (77— — o) and the final momentum
(T— + o), and found it to be — e~ "1 (independently of
the width of the Gaussian ). Therefore the two momenta dif-
fer (although their densities coincide) and this shows the
difficulty of defining a pathwise analog of the scattering ma-
trix in stochastic mechanics. Similarly, if one computes the
correlation coefficient of the squares of the momenta, it
turns out to be equal to — e ~>". Hence in stochastic me-
chanics there is no pathwise energy conservation, i.e., the
trajectories of the position process do not exhibit elastic scat-
tering.

We also point out that the definition of the momentum
process 7, depends on the state of the quantum system, as
does the position process #,. In contrast to &,, the process =,
will generally not be a diffusion. Moreover, as we shall see,
7, will turn out to be non-Markovian.

Before entering into a discussion of the momentum pro-
cess, we consider the ground state of the harmonic oscillator
as an explicitly calculable example.

IV. HARMONIC OSCILLATOR GROUND STATE

In order to assess the scope of the momentum variables
,, the ground state of the one-dimensional harmonic oscil-
lator will be discussed. For this specific example 7, can be
determined rather explicitly.® We point out that the free case
is also tractable if one starts with a Gaussian wave packet as
initial condition.”

The ground state of the harmonic oscillator is given by

P(x,0) = 2ro?) "V exp{ — ot + x*/20%)},  (15)

where 02: = #/2mw (@ >0) is the variance of position.
The drift is consequently given by

b(x,t) = —wx (16)
and the position process obeys
dé, = — wé, dt + dw,, 17
L
go=em o+ [eraw). (18)
0

Next we consider the free particle solution with initial
condition

P (x,t) = P(x,t),
1e.,
P xT) = 2ro?) "1 +in(T— 1] ~'/2
Xexp{ — {liwt + x*/20*[1 + iw(T - 1)}1},

(19)

(20)
1 T—t¢ .
T
21
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where we have set

y(¢) : =arctan ot — } In(1 + &’ ?). (22)
As a result of this, we find
dEf = —y(T—EH dT + dw, (23)
T
§ff'=e_”(r")[§f’+f er=="o dwf‘] , (24)
m, o= mwe‘””[é’f‘—}-f erE—"o dwf'] . (25)
t

So we have obtained a direct form of the momentum
variables. Another formula may be found on application of
1t6’s lemma:

d [0, = &7~ 0 dE, 4 Yz — eI, dz
=[pz—1) —w]e"" P&, dz

+e"= =" duw,. (26)
It follows from (18) and (22) that
lim e"'T=9&, = (1/w)e™? lim (£;/T) =0, 27)
T T—w
£, =J [w — ;'/(z — 1)), dz — f e’ Vdw,.
t t
(28)

If we now also impose Davidson’s “by fiat” conditions
(13), then we get another formula for the momentum pro-
cess,

T, =mwe‘”’zj [@ — ¥(z — 1) ]e”C~ V¢, da. (29)

This representation of 77, makes it clear that 7, has two
(but no more) continuous derivatives. We use

Yt =o[(1 —wt)/(1 + 0],

y(1) = 0*[ (%2 — 20t — 1) /(1 + 0% ?)?]

and obtain

(30)
(31)

T, = mwe‘"”f g; llw—yz—0)"""]g, dz,  (32)
i =mwe"’/2U‘w£f— [w—y(z—1))e""""]E, dz
! , at? 4 i

_ W%, ] (33)
We will come back to the results obtained and discuss
them at some length in Sec. V1.

V. PHASE SPACE FORMULATION OF QUANTUM
MECHANICS

Now the possibility of formulating quantum mechanics
in the phase space of position and momentum will be re-
viewed briefly. In the so-called phase space formulation of
quantum mechanics one considers a function F(x,p),
which, in the classical limit, is expected to converge to the
classical phase space density. (We drop the time dependence
in this section.) The existence and properties of such distri-
bution functions are closely related to the possibility of for-
mulating quantum mechanics in terms of classical con-
cepts.'® But this is exactly what stochastic mechanics claims
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to achieve, or as Nelson® puts it: “Stochastic mechanics at-
tempts to provide a realistic, objective description of phys-
ical events in classical terms.”

We will relate the joint probability density of the process
(&,,m,) to the phase space formulation of quantum mechan-
ics in Sec. V1.

The first analysis into the direction of quantum distribu-
tion functions goes back to Wigner in 1932." Since then this
approach has been studied by many authors, both for con-
ceptual reasons and in order to gain an effective means of
calculating quantities that are not easily obtainable other-
wise. The phase space density F(x, p) is required to yield the
proper quantum mechanical marginals (all integrations, un-
less otherwise noted, are to be extended over the whole
space):

fF(x,p)dp = |g(x)|? (34a)

fF(x,p)dx =¥ P (34b)

where 3 and fﬁ are the configuration and momentum wave
functions, respectively. A milder form of conditions (34) is
to require that F(x, p) should give the quantum mechanical
expectations for functions depending on one of the phase
space variables:

HF(x,p)[gl(x) +8(p)dxdp

=Jt//*(x)[g1(x) +g2(—lf'i- )]zﬁ(x)dx. (35)

9
ax
Wigner has shown'* that there is no non-negative distribu-
tion function satisfying (35) such that F(x, p) is a Hermi-
tian form in 3. Thus we cannot have Hermiticity in stochas-
tic mechanics.

Cohen'® has given an explicit representation of all quan-
tum mechanical distributions satisfying (34):

F(x,p) — ff‘fei(eu—ox«rp)f(gﬁ)

X¢*(u —%)(u +—"21) d6 dr du, (36)
where fis any function satisfying
S0,7) = f(6,0) = 1. (37)

For f==1, one gains the Wigner distribution. The character-
istic function M(8,7) of F(x, p) is defined by

M@6,r) = ffe“""*””F(x,p)dx dp

= 0,r)fei9"¢*(u - %):/J(u + le)du.
(38)

The quantum mechanical distribution function F(x, p)
may in general assume negative values (as the Wigner distri-
bution does), or it even may be complex valued. Of course, in
stochastic mechanics we deal with proper probability distri-
butions.

As indicated by Eq. (35) the distribution function F
allows us to calculate expectations of quantum mechanical
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observables in a probabilistic manner rather than through
the operator formalism of conventional quantum mechan-
ics. Let g(x, p) be a classical function of position and mo-
mentum and denote by G (X, P) the corresponding quantum
operator. We would like, of course, for F to yield

B X, PYp) = ftp*(x)G(X, Pyp(x)dx

= fg(x, p)F(x, p)dx. (39)

However, there is no distribution F that gives the right
expectation values for all quantum mechanical operators.
This is because noncommuting observables cannot have a
genuine joint distribution.? That is, we cannot find a distri-
bution F that satisfies, in addition to (39), the equation

(G (X, PY)) = fw(x)q(acx, P)W(x)dx

= fq(g(x,p))F(x, p)dx, (40)
for arbitrary functions ¢(-). We shall elucidate this fact by
an example.

To this end we recall that Cohen'® has established a
general relationship between phase space distributions and
the rules of associating classical quantities to quantum me-
chanical operators:

g(x, p)—G(X, P). (41)
These prescriptions are called correspondence rules or rules
of association. A correspondence rule is related to a distribu-

tion F and a function g if (39) is satisfied. For instance,
Weyl’s rule

ei(9x+fp)_>ei(8X+rP), (42)
or equivalently
xnpm_)i Z(n)Xn—IPmXI (43)
2" o\

is obtained if one deals with the Wigner distribution.

If one computes the variance of the energy of the first
excited state of the harmonic oscillator by means of the clas-
sical Hamiltonian and the Wigner distribution, we obtain a
nonzero value. This is clearly in disagreement with quantum
mechanics. The explanation of this “paradox” is easy.
Weyl’s rule of association promotes the classical Hamilton-
ian

h(x, p) = (1/2m)p? + (mw?/2)x?

H(X, P) = (1/2m)P? + (mw?/2)X?,
but H 2(X, P) is not related to 4 *(x, p) in this way, because

xp*—}(X*P? + P?X? 4+ 2XP%X). (44)
Obviously this differs from the term J(X?P? + P?X?) in
H*X, P).

What does this example teach us? It exemplifies the fact
that a given phase space density is only useful in connection
with particular operators for which it yields the proper quan-
tum mechanical expectations. Of course, for operators of

either X or P, any quantum mechanical distribution function
may be taken [cf. (35)].
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We close this section with a remark on the position—
momentum uncertainty relations in the phase space formu-
lation of quantum mechanics. It is often maintained (e.g., in
Ref. 5) that the existence of a joint distribution of position
and momentum is in contradiction with the uncertainty rela-
tions. However, this is not so, because in order to establish
them one only needs the marginals. Take, e.g., F(x,p)

= |#9(x) |?|#( p)|*- This function yields the uncertainty re-
lations.

VI. COMMENT ON THE MOMENTUM PROCESS

What is the physics behind the momentum variables 7, ?
All we know so far is that they have the right distributions,
but we are going to investigate some more of their properties.

A. Operational meaning

Momentum is one of the fundamental concepts both in
classical and quantum physics. For instance, this notion en-
ters in an essential way in scattering theory, and momentum
is, in fact, what experimentalists frequently claim to be able
to measure. From this point of view it seems indispensably
necessary that any reasonable definition of momentum has
an operational meaning; i.e., a prescription of a measuring
procedure must go with it. Normally there are two possible
ways of defining momentum.

(a) The classical definition of instantaneous momen-
tum is used whenever the particle trajectories are differentia-
ble.

(b) The time-of-flight definition of Feynman and
Hibbs'” gives another operational prescription for the deter-
mination of momentum. This is a common tool in scattering
theory.

Instantaneous momentum is clearly of no use in sto-
chastic mechanics, since diffusions are nowhere differentia-
ble, although a more refined theory of Brownian motion con-
taining the microscopic equations should—physically
speaking—allow for instantaneous momentum. The time-
of-flight technique, however, enters in the statement that the
diffusions of stochastic mechanics have the property that
each sample path assumes constant velocity asymptotically,
and the distribution of this limit coincides with the quantum
mechanical initial or final velocity.>'2

So for the case of zero potential the definition of , is
operationally meaningful. If one waits sufficiently, one can
measure the momentum approximately. Whenever a non-
vanishing potential is present, there is no experimental way
of implementing the definition of 7,, because you cannot
simply turn off the potential at time 7. But this was required
in the definition of 7,. For this reason the momentum pro-
cess 7, is found to have no operational meaning (except in
the free case).

B. Non-Markovity

Let us consider the harmonic oscillator in the ground
state. From the explicit representation (25) of the momen-
tum process one can already guess that 7, does not have the
Markov property because it is the sum of the Markov process
&, and a term depending on the future.
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To prove this rigorously we consider the covariance of
the momentum process. Let s <. After some calculations
using (18), (25), and

E[( =02 20", (45)
we find that
E|nm]= mzwze_"[a Zg—ot—9
+ _ﬁ_e—w(t—s)f’_sewz-ry(z) dz
m (1}
-+ i er® dz} . (46)
mJr—s

i.e., the covariance is a strictly positive function of ¢ — s,

E [m,m ] = mo’e"C(t —s). 47)
Moreover, C(t) is not a constant, since
t
C(t) = -ﬁ [ﬂe"‘" + we‘”‘fe“’+7"’ dz
ml2 o
— e‘/(t) + e27(!)] (48)

is negative. In particular, C(z — s) does not split into a pro-
duct of functions of s and ¢ only.

For a Gaussian process with strictly positive covariance
the Markov property is equivalent to the statement that the
covariance splits.'® Thus we have established that 7, is non-
Markovian, a result independent of assumption (13).

Whether this must be looked at as a defect of 7, or not is
not quite clear. Although stochastic mechanics usually deals
with Markovian diffusions, it might be necessary to shifttoa
non-Markovian framework in order to satisfy the locality
principle.?

C. Force

We saw that in the simple example of the harmonic os-
cillator ground state the momentum process was differentia-
ble provided we impose assumption (13). Let us rewrite

1'7', = —ma)e_”/2J ai[(w — 7./(2— t))e”(z“”]é‘z dz
t Iz

(49)
by means of It6’s lemma:
al 160 =L g ar v [ e (50)
We also use
[ ll.=.=0, lim({ ]1§,)=0. (51)
Then
1, =ma)e_”/2J-w[ 1d€,
=mwe‘”’2[ _me[ 1£, dz+fw[ ]dw,] .
t t (52)
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When inserting (26) this gives

7, = —ma)e""/z[a)é‘, —f Yz —0)er==? dwz] .
t
(53)

From this we can deduce that 7, is a Gaussian process of
mean zero and variance given by

Var 7, = m*0’e ™~ ”[mza I+ ﬁJ ()@ dz] .
m Jo
(54)

The last integral can be calculated explicitly. Let y
: = arctan wz. Then

o /2 — 2
f yz(z)ezm) dz = a)f' (1__2_“_-‘1.) e dy. (55)
0 (¢]

1 4 tan®y
But
1 —tany )2 1 ( . 1 . )
———————} =— {1+ cos2y —sin2y — —sin4y].
( 1+ tan’y 2 Y Y 2 Y
(56)

Therefore

f P(2)e7® dz = 2 (e" — 11) (57)

o 20

and finally we obtain

Var#, = [(1 —e~")/10]lm?w*c 2. (58)

Of course, 7, is expected to be the stochastic equivalent
to force. Most unfortunately, however, this is not the case.
For the harmonic oscillator, the quantum mechanical force
operator F is multiplication by — mw?x. And this implies
that the variance of the ground state is equal to

((F—(F))*) = m’o*(x?)

= m?wio 2. (59)
As this is in disagreement with (58), 7, does not have the
same distribution as the force operator F. Therefore 7, can-
not be interpreted as force.

Incidentally, Guerra and Morato® define a momentum

process for the coherent states of the harmonic oscillator by
dr™ = F _(#"M,1)dt 4 J#mo dib,, (60)

where i, is the unit Wiener process. In their construction,
however, 7™ is not acting on the same probability space as
¢&,. For the ground state, the forward and backward forces
are given by

F, (pt)= Fap, (61)

and the distributions of both F_ (7°™,¢) and F_ (7"™,¢) co-
incide with the quantum mechanical force distribution.

D. Uncertainty relations

Without making use of the momentum process, the po-
sition-momentum uncertainty relations can be rediscovered
in stochastic mechanics, both the usual Heisenberg uncer-
tainty relations'>?° and their generalized form & /a Schro-
dinger?":

Var X Var P>Cov*(X, P) + #°/4, (62)
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where

Cov(X,P): =J(XP+PX) —(X)(P). (63)
In the stochastic frame
Var £(Var u + Var v) >Cov?(£,0) + 2. (64)

Therefore the uncertainty relations (58) and (60) are equi-
valent, since

Var X = Var &, (65)
Var P = m?(Var u 4+ Varv), (66)
Cov(X, P) = m Cov(&p), (67)
v="~H/2m. (68)

In the example of Sec. IV we were dealing with a coher-
ent state where the Heisenberg inequality turns into an equa-
lity, i.e.,

Cov(X, P) =0. (69)

Can we find the uncertainty relations by means of 7,?
We know from the results above that Var& Varwr
= Var X Var P, and hence Var £ Var 7 has the same lower
bound. But if we try to mimic the proof of (64) we find

Var £ Var 7 = E[ (£ — E€)*]E[ (7 — Em)?]
>|E[(£ — EE)(m — Em)]?

= Cov?(&,m) = (h%/4)e™ ™ (70)

The last equality follows from Eq. (25). Of course, in the
light of the remarks of Sec. V, there is no surprise that
Cov(&,7) does not coincide with Cov(X, P) =0 (cf. also
Ref. 22).

Clearly the momentum process has the drawback that it
cannot be used in an obvious manner to obtain the uncertain-
ty relations in the stochastic frame, although it does satisfy
them.

As for the momentum process 7™ considered by
Guerra and Morato, it also cannot be used directly to obtain
the uncertainty relations, because it is not defined on the
same probability space as &,.

E. Joint distribution of (€,, ,)

If we impose assumption ( 13), the position and momen-
tum variables related to the ground state of the harmonic
oscillator are jointly Gaussian and their covariance matrix
can be calculated. The explicit formula for the joint probabil-
ity density of F(x, p) of (£,, 7,) is given by

F(x,p) =[(1 —e~")~V2/7#]

1
X e ———
exp[ 20%3(1l—e~™)
X[xz__2_e—ﬂ/2xp+ . 2172]}, (71)
mo (mw)
f8,7) = exp(— (#i/2)e "%67), (72)

and it fits into Cohen’s classification. Of course, there is no
time dependence.

1554 J. Math. Phys.,, Vol. 27, No. 6, June 1986

F. Variance of the ground state energy

No question, the variance of the ground state energy
must vanish, since the ground state is an energy eigenstate.
But if we use the density F(x, p) from Eq. (71) along with
the classical Hamiltonian, we find the same phenomenon as
discussed in Sec. V: The ground state energy has a nonzero
variance when computed in phase space.

That is, the joint distribution is not adapted to compute
energy dispersions.

VIi. CONCLUSION

What are the merits of the momentum process? Of
course, it has the (minimal) property that its distribution
coincides with the quantum mechanical momentum distri-
bution. But, as we pointed out, this is not the only process
with this characteristic.

On the other hand our analysis disclosed some manifest-
ly unphysical features. The most serious ones are as follows:
there is no operational implementation, the derivative of the
momentum process does not yield force, and there is no
straightforward way of gaining the position~-momentum un-
certainty relations using this process.

These unsatisfactory shortcomings lead us to the con-
clusion that such a definition of momentum is unacceptable.
Yet there is no better stochastic definition known so far.
Only configurational observables are satisfactorily embed-
ded in the stochastic frame.

Undoubtedly, any measurement in physics can even-
tually be reduced to a position measurement. But this does
not invalidate the concept of momentum. It is certainly of
interest to extract the information on momentum encoded in
stochastic mechanics in a way such that position and mo-
mentum are on the same footing. It seems to us that a new
approach to momentum in stochastic mechanics is in order.

ACKNOWLEDGMENTS

I should like to thank S. Albeverio, Ph. Blanchard, and
Ph. Combe for stimulating discussions and R. Brustein for
useful correspondence. Thanks are also due to R. Marra for
having pointed out Ref. 6 to me.

'E. Nelson, “Derivation of the Schrédinger equation from Newtonian me-
chanics,” Phys. Rev. 150, 1079 (1966).

2E. Nelson, Dynamical Theories of Brownian Motion (Princeton U. P.,
Princeton, NJ, 1967).

3E. Nelson, Quantum Fluctuations (Princeton U. P., Princeton, NJ, 1985).

“F. Guerra, “Structural aspects of stochastic mechanics and stochastic
field theory,” Phys. Rep. 77, 263 (1981).

*F. Guerra and L. Morato, “Momentum-position complementarity in sto-
chastic mechanics,” in Stochastic Processes in Quantum Theory and Statis-
tical Physics, Lecture Notes in Physics, Vol. 173, edited by S. Albeverio, Ph.
Combe, and M. Sirugue-Collin (Springer, Berlin, 1982).

SM. Davidson, “Momentum in stochastic mechanics,” Lett. Math. Phys. 5,
523 (1981).

"D. de Falco, S. De Martino, and S. De Siena, “Momentum from sample
paths in stochastic mechanics,” Lett. Nuovo Cimento 36, 457 (1983).

8F. Guerra and L. Morato, “Quantization of dynamical systems and sto-
chastic control theory,” Phys. Rev. D 27, 1774 (1983).

°F. Guerra, “Probability and quantum mechanics; the conceptual founda-
tions of stochastic mechanics,” in Quantum Probability and Applications
to the Quantum Theory of Irreversible Processes, Lecture Notes in Math-

Simon Golin 1564



ematics, Vol. 1055, edited by L. Accardi, A. Frigerio, and V. Gorini
(Springer, Berlin, 1984).

D, S. Shucker, “Stochastic mechanics of systems with zero potential,” J.
Funct. Anal. 38, 146 (1980).

1P, Biler, “Stochastic interpretation of potential scattering in quantum me-
chanics,” Lett. Math. Phys. 8, 1 (1984).

12M, Serva, “Elastic scattering in stochastic mechanics,” Lett. Nuovo Ci-
mento 41, 198 (1984).

BE. A. Carlen, “Potential scattering in stochastic mechanics,” Ann. Inst.
H. Poincaré A 42, 407 (1985).

ME. P. Wigner, “Quantum-mechanical distribution functions revisited,” in
Perspectives in Quantum Theory, edited by W. Yourgrau and A. van der
Merwe (M.L.T., Cambridge, MA, 1971).

ISE. P. Wigner, “On the quantum correction for thermodynamic equilibri-
um,” Phys. Rev. 40, 749 (1932).

1555 J. Math. Phys., Vol. 27, No. 6, June 1986

18L. Cohen, “Generalized phase-space distribution functions,” J. Math.
Phys. 7, 781 (1966).

7R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals
(McGraw-Hill, New York, 1965).

'8B, Simon, Functional Integration and Quantum Physics (Academic, New
York, 1979).

19L. de La Pena-Auerbach and M. Cetto, “Stronger form for the position—
momentum uncertainty relation,” Phys. Lett. A 39, 65 (1972).

20D, de Falco, S. De Martino, and S. De Siena, “Position-Momentum un-
certainty in stochastic mechanics,” Phys. Rev. Lett. 49, 181 (1982).

218, Golin, “Uncertainty relations in stochastic mechanics,” J. Math. Phys.
26, 2781 (1985).

22H. Margenau and R. N. Hill, “Correlation between measurements in
quantum theory,” Prog. Theor. Phys. 26, 722 (1961).

Simon Golin 1555



The range of quantum probability
ltamar Pitowsky

Department of Philosophy, The Hebrew University, Jerusalem, Israel

(Received 8 October 1985; accepted for publication 30 December 1985)

The set of all pair (and in fact higher-order) distributions that are representable in quantum
mechanics is characterized and compared with the classical range. Various interference
phenomena yield pair distributions that are not classical; a few examples are discussed. These
results shed light on some fundamental problems concerning the interpretation of quantum
mechanics, in particular it is demonstrated how the “quantum logic” of Birkhoff and Von
Neumann can be naturally interpreted in terms of truth values. Finally, the possibility of
interpreting quantum probability in a realistic “quasiclassical” way is explored.

I. BETWEEN TWO CONVEX POLYHEDRA

Let SR ,, denote the set of all 7 X n real symmetric matri-
ces. Then SR, is a linear space with the usual matrix addi-
tion and scalar multiplication and dim(SR,,) =1 n(n + 1).
Also SR, is a topological space with the usual Euclidean
topology. For convenience I shall represent this topology
with the supremum norm. Thus if a = (a,;)€SR,,, we shall
put ||a|| = max;|a;|. I shall denote by cl(4) and int(4) the
closure and interior of a subset 4 CSR,,, respectively, and by
co(4) the convex hull generated by A (i.e., the intersection
of all convex sets containing 4).

Definition 1.1: A matrix peSR,, is called a phenomenal
pair distribution of order n if, for all i, j = 1,2,...,n,

O<pij<min(pii,pﬁ)<max(pi,,pﬁ)<l . (1.1)

Let L, be the set of all phenomenal pair distributions of
order n. Then it is easy to see that L, is a compact convex
subset of SR,,. The motivation behind this definition is pro-
babilistic. Let 5,,5,,...,5, be “events” or “states” of some sys-
tem and put p; = prob(s;) and p; = prob(s;&s; ) then sure-
lyp = (p;)€L,. Condition (1.1) is indeed necessary for p to
represent classical pair distribution but it is not sufficient.
Thus the matrix p = (4 {) is in L, but it does not represent
any classical distribution since the intersection of two events,
each having probability 1, has necessarily probability 1 as
well. Let us therefore introduce the following definition.

Definition 1.2: A phenomenal distribution peL, has a
classical representation if there exists a probability space
(X,2,u) and events 4,,...,4,€2 such that p; = u(4,n4;),
ij=1.2,..,n.

Let C, denote the set of all phenomenal pair distribu-
tions of order n that have a classical representation. We shall
prove that both C, and L, are (compact) convex polyhedra
in SR, with nonempty interior and characterize them in
terms of their extreme points. It is a matter of fact that in
microphysics one observes pair distributions peL, that do
not have a classical representation (see examples in Sec.
IT A). Itis therefore interesting to characterize all those pair
distributions that might arise in a quantum mechanical con-
text. So we define the following,

Definition 1.3: A phenomenal pair distribution peL, has
a quantum mechanical representation if there exists a sep-
arable complex Hilbert space H a density operator (statisti-
cal operator) W on H and (continuous) projections
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E,,....E, (which do not necessarily pairwise commute) such
that

p; =tr[W(E;AE))], §=12,..n, (1.2)
where E; A E; denotes the projection onto the closed sub-
space E; (H)nE,; (H).

Let Q, denote the set of all phenomenal distributions
peL,, which have a quantum mechanical representation. I
shall prove that @, is convex and that @, D C,,. However, Q,
is not closed and thus it lies between two convex polyhedra
C,CQ, CL,. The main result of Sec. I is the demonstration
that Q, contains the whole interior of L, : Q,, Dint(L, ) and
thus all phenomenal pair distributions have quantum repre-
sentation, save for some that lie on the faces of L,,.

The present discussion concerns pair distributions
Py = prob(s;&s; ) but it can be extended easily to triple qua-
druple or any k-tuple distribution:

Piy..i, = prob(s; &s, &&s, ) .

With the obvious extensions of Definitions 1.1, 1.2, and 1.3,
all the proofs given in this article generalize easily. I thus
have decided to concentrate on the simple case and save
cumbersome notations.

The most common cases of interference phenomena
give rise to pair distributions peQ,, which lie outside the
classical domain C,. Few typical examples are discussed in
Sec. IT A. I believe that the formal results of Sec. I shed some
new light on fundamental problems concerning the interpre-
tation of quantum mechanics. These are discussed in Sec.
II B. In particular, the so-called “quantum logic” can be
viewed from a new angle (Sec. II C).

In the third section, I explore the possibility of repre-
senting quantum mechanical distributions peQ, by means
other than the ones provided by the Hilbert space formalism.
In particular the possibility of forming a “realistic’” model of
such distributions is discussed.

The connection between probability theory and convex
analysis is long known. It was explored lately by Grag and
Mermin' in the case of phenomenal pair distributions asso-
ciated with spin measurements. This paper was motivated by
their results. All basic facts concerning convex sets and their
properties that I use are to be found in the monograph by
Rockafellar.?
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A. Characterization of L,

A matrix SR, will be called an extreme matrix if
ueL, andu; =0oru; = 1foralli,j=1,2,.,n. Let &, be
the set of all n X n extreme matrices then E,, is finite {surely
card(&,) <2/P"+ D] and we have the following ther-
orem.

Theorem 1.1: A matrix peSR,, is an extreme point of the
convex set L, if and only if it is an extreme matrix. Therefore
L, =co(%,).

Proof: 1t is easy to see that if ueL, is an extreme matrix
then u is an extreme point of L, Suppose that we have a
representation u =Ap + (1 —A)p’, where pp'el, and
0<A <1, then,foralli,j=1,2,..,n,u; = Ap; + (1 = A)p;.
We know that u; = 0 or u; = 1. Since {0}, {1} are extreme
points of the interval [0,1] and since 0<p;, p;<1, we have
u; = Oentailsp; = p; = 0,u; = lentailsp; = p; = 1, and,
therefore, p = p’ = u and u is an extreme point of L ,.

Suppose that p is an extreme point of L, then since L,, is
closed we have peL, . Consider the function f(¢) = 2¢ — 12,
It is an increasing function in the interval [0,1] and
f10) =0, f(1) = 1. Define a matrix p' by p; = f(p;), then
from the above-mentioned properties of f it follows that
p'eL,. Consider the function g(¢) = ¢ Again it is an in-
creasing function in the interval [0,1] and g(0) =0, and
g(1) = 1, therefore the matrix p defined by p}, = g(p,;) isin
L,.Now }( f(¢) + g(#)) =1, therefore p = | p' + | p”. Since
pisan extreme point we have p = p' = p?, therefore, in parti-
cular, p; =pfj foralli,j= 1,2,..,n. Hencep; = lorp; =0
for all /, j and since peL,, it follows that p is an extreme ma-
trix. Every compact convex set is the convex hull generated
by its set of extreme points, hence L, =co(%,). Q.E.D.

The set of all # X n extreme matrices & , is finite, there-
fore L, is a polyhedron. Suppose &, = {u',u’,...,u*}, then
every peL, has a representation P=3*_ A u”, where
0<A4,<1 and 3¥_, A, =1. Note that the zero matrix,

v=1

u; =0,4,j=1.2,..,n, is also an element of E,,.

B. Characterization of C,,

C,, the set of all peL,, that have a classical representa-
tion, is a convex polyhedron generated by a subset of the set
of extreme matrices. Let {0 = {0,1}" be the set of all n-tuples
of zeros and onmes, card(Q) =2". I shall denote by
€ = (€,,€.-..,€, ) the elements of ). For €€ let u(¢€) be the
extreme matrix defined by u;(€) = ¢€;€;, i,j = 1,2,...,n. In
this way we obtain 2" distinct extreme matrices.

Theorem 1.2: C, is the closed convex hull generated by
the set of matrices {u(€); eeQ}.

Proof: Suppose that peC,. Then there is a probability
space (X,Z,u) and subsets A,,..4,€2 such that
Py =p(4,n4;), for i,j = 1,2,...,n. Let BeX be an arbitrary
set. Denote B! = B, B’ = X\ B = B and for e} denote
A(e) =ASrd$n..nd;". Then for e#€ we have
A(€)nA(€') = ¢ and U qA(€) =X. Put A(e) =uld(e)],
thenO<A(€)<land 2, A(€) = 1. Foralli,j = 1,2,...,n, we

have A,n4; =u{d(€); € =¢ =1} Hence, for
iL,j=12,..,n,
1557 J. Math. Phys., Vol. 27, No. 6, June 1986

Dy =u(A,n4;) = Z A(e)

{ele;=¢;=1}

= z €€A(e) = z u;(e)A(e).
€€} e}

Therefore peco{u(€); e}

As for the converse, suppose peco{u (€); €€}, then we
can write p=23_nA(e)u(e), where 0<A(e)<! and
3.0A(€) = 1. Let X = {0,1}" = Q and let = = the power
set of X. Define a measure i on the singletons of X by
u({€}) =A(e) and for BCX put £(B) = Z_,A(€). Then
(X,Z,u) is a probability space. Put 4; = {¢; ¢, = 1}, then

Y Ale) =3 egl(e)
e}

{e € =¢€= 1}

,U(A,Mj) =

= Eﬂ.(e)uij(e) =p; - Q.ED.

As a corollary we see that if peC, , then p can be represented
on the space X = Q = {0,1}" and = = the power set of X.
Let eef) and put |€] = Z7_, ¢,. Consider the set of matrices
u(e) for eeQ such that |¢| = 1. There are n such matrices
with only one nonzero entry on the diagonal. Consider the
set of matrices u(e) for eeQ with || =2. There are
(3) = n(n — 1)/2 such matrices, each having four nonzero
entries. All the above matrices (those with |¢| = 1 and those
with |e| = 2) form a linearly independent set in SR,. But
therearen + (3) =3 n(n + 1) = dim(SR, ) such matrices
and hence the space spanned by C, in SR, is SR, itself. Since
the zero matrix is in C, we have proved the following corol-
lary.

Corollary 1.2: Both C, and L, have nonempty interior.

C. Probability in Hilbert spaces

The state of a quantum mechanical system is given, in
the most general case, by a density operator on a complex
Hilbert space. Let H be a Hilbert space. Then W is a density
operator if (a) Wis Hermitian, W' = W; (b) Wis definite,
(| W |¢) >0, for all |¢)eH; and (c) the trace of W is well
defined and tr(W#) = 1. Pure states are those states for
which W is a projection onto a one-dimensional subspace,
W = |¢) (o], the other states are “mixtures.” With every
closed subspace of H there corresponds a unique (orthogo-
nal) projection operator E onto this subspace.

For two such projections E,E, (which do not necessar-
ily commute) let E, A E, be the projection onto the subspace
E,(H)nE,(H), let E, V E, be the projection onto the closed
subspace spanned by E, (H)UE,(H), and let E | be the pro-
jection onto the subspace orthogonal to E, (H). With these
operations the set of all closed (orthogonal) projections
forms an orthocomplemented lattice. In quantum mechan-
ics we associate with every projection E as an idealized ob-
servable whose expectation on the pure state |@) ($| is
(#|E |#). More generally the expectation of E on the mixture
W is given by tr( WE). Thus given a density operator W puts
L(E) = tr(WE) and we obtain

w(EY) =1—pu(E), for all E; (1.3)
u)y=1, p(0)=0, (1.4)
ltamar Pitowsky 1657



where I and 0 denote the identity and zero operators, respec-
tively; and if E,,E,,....E, are pairwise orthogonal then

(7.5)- £

i=1

(L.3)

This means that if u is restricted to families of pairwise com-
muting projections, u behaves like a regular measure. Due to
a deep theorem by Gleason® we know that every measure on
closed projections in a separable Hilbert space of dimension
>3, which satisfy (1.3)-(1.5), is given by some density ma-
trix W, i.e., by u(E) = tr(WE). Our definition of Q,, there-
fore, does not restrict the discussion.

In the following I shall denote by H, & H, the direct sum
of two Hilbert spaces, i.e., the set of all pairs |¢ ® 1), with
|¢)eH, and |yYeH,, with the usual coordinate by coordinate
addition and scalar multiplication, and with the inner pro-
duct

(poyld’ ay) = (|¢") + (¥|¥).
Here H, ® H, will denote the tensor product of H H, if
|¢.YeH,, |$,)H,, and |4,¥,) stand for |4,) @ |8,).

D. Characterization of Q,

First I shall prove the following lemma.

Lemma 1.4.1: Q, is a convex set in SR,,.

Proof: Let p,p'eQ, and 0 <A < 1. We have to show that
Ap+ (1 —A)p'e@,. Since p,p’'Q,, there are Hilbert spaces
H,H', density operators W,W' on H,H', respectively, and
projections E,....E, in Hand E {,...,E |, in H' such that

py; =t [W(E,NE))], p;=tr[WI(E]ANE])].

Let H=HeoH’ be the direct sum of H and H " and
le¢ W be the operator defined on H by
Wigey)=|AWde (1 —A)W'y). Then W is linear,
self-adjoint definite, _ and tr(W) = A tr(W)
+ (1 =)tr(W') = 1. Let E| bithe projection onto the di-
rectsum E,(H)® E[(H'),i.e., E, = E, ® E. Then since
[E(H)oE[(H)]n[E;(H)eE[(H")]

= [E.(H)nE,(H)) @ [E;(H)E;(H")],
we have E; A l_fj =E,\E;® E] AE] and, therefore,
tr[W(E, AE,)]

=Atr[W(E,NE)] + (1 -A)tr[W'(E]AE])]

=Ap; + (1 —A)p; . Q.E.D.

Lemma 1.4.2: C, CQ,.

Proof: Let H be a Hilbert space of dimension 2”. Let
{|¥(€)); €N} be an orthonormal basis of H parametrized
in an arbitrary way by ee) = {0,1}". As a consequence of

Theorem 1.2 we know that if peC, then there are numbers
0<A(e)<1suchthat 2_,A(e) =1and

Py = £gz/l(e)u,-j(e) = zﬂ €€ (€) .

Let W be the density operator that, relative to the
basis {|¢(€)); eet}, is given by the matrix
(Y)W |P(e)) =0,ife#€ and (Y(€) |W |¢h(€)) = A(€).
Let E; be the projection into the subspace spanned by all
|#(e)) with €; = 1, then E, A E; is the projection onto the
subspace spanned by all |¢(¢)) with ¢; = ¢; = 1 and thus
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u[W(ENE)]= Y

{ele,=¢,=1}

A(e) =Y Ae)eg; =py .
e
Q.ED.

As a consequence we also proved the following corollary.

Corollary 1.4.3: A sufficient condition for peQ, to be in
C, is that E,,...,E, pairwise commute.

Corollary 1.4.4: Q, has a nonempty interior.

Since C, CQ, and int C, #0, We shall now show that
Q, is “almost all” of L,,.

Theorem 1.4:int (L,)CQ,CL,.

Proof: 1t suffices to prove that Q, is densed in L,. For
if A is a convex set in a Euclidean space then
int(cl(4)) = int(A4) (see Ref. 4). Thus if @, is densed, then,
since Q, is convex, we have

int(L,) = int(cl(Q,)) = int(Q,) CQ, .

In order to show that Q, is densed in L, it is sufficient to
demonstrate that for every € >0 and each extreme matrix
ue®, there exists qeQ, such that
|l# — g|| = max;|u; — q;| <e. For if this is the case let
&, = {u',...,u"} be the set of all n X n extreme matrices and
let € > 0. Then for each v = 1,2,....,k there is a matrix ¢*€Q,
such that ||#” — ¢*|| <€. Let peL,. Then we can represent
p=23%_, A u'forO<A, <1, ZX_, A, =1 (Theorem 1.1).
Putg = Z*_ A,¢". Then geQ, since Q, is convex and

k k

llp — qll< E, A — gl < Z] Ae=e
Hence for all e > 0, peL,,, there is geQ,, with ||p — ¢|| < € and
Q, isdensedin L,.

So, by induction on n = 2,3,..., we shall prove that for all
(sufficiently small) >0 and every uc#, there is a geQ,
with ||u — ¢ <e.

For n = 2, the extreme matrices are

b o 6o ()
() G0

The first four matrices are in C, and C,C @, so no problem
arises here. As for the fifth matrix () 9) let 0 <€ <1 and let
0< @< m/2 be such that cos> @ = 1 — €. Let H be a two-di-
mensional Hilbert space with the orthogonal basis |1}, |2).
Let W=|1) (1. Let E, be the projection into the
one-dimensional subspace spanned by the vector
cos 8 |1) + sin 6 |2) and E, the projection onto the subspace
spanned by cos 6 |1) — sin @ |2). Then E; A E, = O and thus
Piz=tr[W(E,NE,)] =0also

pu=tr[WE ] =tr[WE,] =p,,=cos’0=1—¢.

Hence the matrix

1—e¢€ 0
( 0 l—e)GQZ’

for all € >0, and we have proved the claim for n = 2.
Assume that we proved the result for every € >0 and
ue®,_, (forn>2). Let ue®,. Fori = 1,2,...,n. Let u’ be
the n X n matrix given by uj; = uj; =0, for all j = 1,2,...,n,
and uy, = u,, forj,k #i. Thenforalli, u'isanelementof &,
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and ' has zeros in its /th row and column. By the induction
hypothesis there exists g'€Q, such that |ju’ — ¢/|| <€/n. [To
see that, remove the ith row and column from u* to obtain an
(n — 1) X (n — 1) extreme matrix #'€% ,, _, . By the induc-
tion hypothesis there is a matrix g'€Q, , such that
||l#' — §'|| < €/n. Now add an ith row and column of zeros to
g to obtain a matrix ¢'. Surely ||¢' — #/|| = ||’ — #/|| <€/n.
Also g'eQ, since we can always add a projection E; = 0 to
the representation of . ]

Since ¢'eQ, there is a Hilbert space H,, n projections
Ei{, E),..,E’, and a density operator W, on H, such that
g =tr[W.(E;NE})]. (In particular we can take
E!=0.) Let H=H,® H,® - ® H, be the tensor product
of the n Hilbert spaces and let W=W, e W,8--0W,.
Then W is a density operator on H. Fori = 1,2,...,n, let

E,=E!®E’9--9E!"'9l,eE!*'®.-E",
where /, is the identity operator on H,, and let s€Q, be de-
fined by s; = tr[ W(E; AE;) ]. Then by definition we have

Si =i Grgi ' 15" gl = H i »

ksti
and, for i <j,
1 i—1 o it 1 i— 1 i 4]
5 =q; '"q:‘j ) q:.j'*' q{] q; fo q:;
— A k
=¢; q; H g -

K#§
The proof is concluded when we observe the following: If
0<a,,--sa,,, by,...,b,, <1 are numbers such that |a, — b;| <€,
i=1,..,m, then
IHa-1I b,-’ <me.
i=1 i=1

Now since ue# , and since, for k #i, ut = u; = (u;)" =,
we have

sy — uiil = Isii - (uii)n—1|
— k k €
= Hqii_Huii <(n—1)—<e.
ki ki n

Let i <j. Since fqr k #1ij we have uffj =u; = (u:;)n—z and
since u; = uj;<uj; u; = u;u; , we have

ii #jj
A k . & €

Isij"uij'= qi'iq_;jnqij_u{'iu;jnuij <h—=¢€.
k#ij k#i n

Hence ||s — u|| <€, for seQ,. Q.E.D.
Corollary 1.4: Let peL,. A sufficient condition that

peQ, is
0<py <min(Pii,Pji )<max(p;,p;) < 1,
forij=12,..,n.
We see that the entire interior of L, is in Q,. But
Q, #L,, for example, the matrix (} 9)¢Q, because if
tr(WE,) =tr(WE,) =1
thennecessarily tr[ W(E, A E,)] = 1. Butforevery1>€>0
the matrices

(1_e 0) d(l 0)
o 1/ 1-¢

are elements of Q, and hence Q, is L, except the extreme

(1.6)
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matrix (3 9). In higher dimensions the situation may be
more complicated and @, does not contain some nonex-
treme matrices on the faces of L, as well. For example,

09 0 0
o 1 oko,.
0 0 1

The following, however, remains valid: If u is an extreme
matrix that is not classical (i.e., uéC, ) then u¢Q,.

For n = 2, we can actually draw a picture of L,, @,, and
C, when we identify the matrix

(1;11 Plz)
12 P2

with the three-dimensional vector (p,,p,2,01,) (Fig. 1).

In general we shall call Q, \ C,, that is, the set of all the
matrices that have a quantum mechanical representation but
not a classical representation, “the interference region.”

Il. EXAMPLES AND INTERPRETATIONS
A. Examples

Suppose that we are given a closed convex polyhedron 4
in a Euclidean space and a vector p in that space and we are
asked to determine whether p is an element of 4 or not. Such
a problem can be replaced by an equivalent decision prob-
lem: Determine whether p is a solution to set of linear in-
equalities (which depends on 4).° Bell’s inequality® and the
Clauser-Horne inequalities’ are typical examples of such a
procedure (associated with C; and C,, respectively). In that
respect the results obtained in the previous chapter are ex-
tensions of Bell’s work.

Yet the violation of Bell’s inequality in the Einstein—
Podolsky—Rosen (EPR) experiment is only one example of
a pair distribution that lies in the interference region. Inter-
ference phenomena of various kinds often give rise to pair
(or higher-order) distributions that possess this character.
In addition to the EPR case I shall discuss three examples:
the two-slits experiment, the scattering of identical particles,
and the interference of paths of a free particle (in Feynman’s
path integral formalism). The discussion will be brief with

~—

I

10
(19)
/
’
/
/
0] (0]
6o 6
edges of C2
_____ — edges of L,/Cy
FIG. 1.
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many technical details omitted since those problems are
worked out in great detail in many textbooks. My purpose is
to associate these cases with the analysis of pair distributions
provided in the previous chapter. Note that the pair distribu-
tions in some of these examples is “phenomenal” only in a
theoretical sense. The “experiments” described are only
thought experiments. (This applies in particular to the two-
slits and free-particle cases.)

(a) EPR experiment: The experiment involves a mea-
surement of spin on a pair of electrons (or other particles) in
the singlet state while the particles are sufficiently separated.
I shall not describe the experimental setup, which is well
known, and only analyze the corresponding pair distribu-
tion.

For a given direction w in physical space let
| + w),| — w) be the states “spin up” and “spin down” in
the direction w of a spin-} system. Let E, = | + w) ( + w|
and E_, =| —w) ( —w| be the projections onto these
states. Given a pair of electrons, the one-dimensional projec-
tion E, ® E_ , corresponds to the pure state “spin up in the
w direction for the first (left) electron and spin down in the
w direction for the second (right) electron” with similar
interpretation for similar expressions.

Let W, the density matrix, be the projection onto the
singlet state. Since this state is rotationally invariant it can be
represented as

W)=/ 2)[|+w)e|—w) —| —w)e|+w)]

for every direction w. Let x,p,z be three distinct directions
and consider the projections

E,=E . ®E VE . oE_,,
E,=(E_,®E,)"
= (E,®E,)V(E,®eE_,)V(E_,8E_)),
E3= (Ez ®E1)V(E—Z®Ez) .
Then E, A E, is the projection into the space spanned by
| +x)®| —y), E,AE; is the projection into the span
(] + x) ® | + 2)),and E, A E, is the projection into the span

(| +y)®| +2)). The matrix p, = tr[ W(E,E,)] is given
by

} }cos?(Xp/2) ) sin®(¥z/2)
P =|4cos*(xy/2) ! }sin®(32/2) |,
}sin®(Xz/2)  isin*(yz/2) }
where xy is the angle between the directions x and y. We have
the following theorem.
Bell’'s Theorem®: There is a choice of directions x,p,z
such that p¢C,.

Proof: Suppose there exists a probability space (X,2,u)
and events, which I shall also denote by E,,E,E,, such
that p(EnE;) =p;. Then put E, =X \E,. We have
H(ENE;) Spu(ENENE;) and p(ENE;)>u(EnENE;).
Adding these inequalities we get

K(E\NE,)) + u(ENE3) >p(ENE;) ,

but,u(EInE'Z) =u(E,) — u(E,nE,). Substituting from the
matrix we obtain that peC, only if

i sinz(xzi) +1 sinz(y?})>§ sin(%z) .
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Take x,,z, which lie in the same plane with
6 =xy=yz=1xz. We get that peC, only if sin?(8/2)
>} sin®6, an equality that is violated for, say 6 = 60°.
(b) Two-slits experiment: Consider a beam of photons
(or another type of particle) scattered by two slits and arrive
at a screen behind. Let R,R,,R, be the regions on the screen
above the upper slit, between the two slits, and below the
lower slit, respectively. Consider the following events:
s, - photon passes through the upper slit,
s, - photon arrives at region R,
s, - photon arrives at region R,,
s4 - photon arrives at region R;.
Formally these events correspond to projections in a Hilbert
space E,E,E;E, such that E,lE, for ij=2,3,4, and
[EE, ] #0, forj = 2,3,4. I shall not bother to identify these
subspaces and concentrate on the phenomenal level.
Suppose that the coming photons are all in a fixed pure
state so that the density operator W is just the projection
onto this state. In order to measure probability (s,)
= tr( WE,) we put detectors behind the two screens and
count the number of incoming photons [ Fig. 2(a) ]. Assume
that the slits are symmetric relative to the source so that
P1 = probability (s,) = 1.
The measurement of p, = probability (s;), for
i = 2,3,4, consists of counting the number of photons on the
screen when interference occurs [Fig. 2(b) ]. By symmetry
we have p; = pay = (1 — p53). In order to measure p,;, for
J=2,3,4, we cannot use detectors as in Fig. 1(a), since, in
the best case, the detector will further scatter the incoming
particles. The following suggestion due to Einstein® provides
a thought experiment which does the job. Let the screen
behind the slits be so constructed that it can move up and
down parallel to the line connecting the slits. Then we can
measure both the position of the incoming photon by detect-
ing it on the screen and determine which slit it came from by
measuring the direction of its momentum component paral-
lel to the screen. Due to the uncertainty principle the inter-
ference will be destroyed and the distribution on the screen
will be just the average of two normal curves about the slits
[Fig. 2(c)]. We have p,, = prob(s,&s,) = . Here p,; is
slightly less than }, say, p,; = } — 8, and p,, = &. The matrix
is therefore

4 i j—o 4
s | 4 -2 0 0
i-6 0 P33 0

6 0 0 (1 —p33)/2
= @ counter _4|_ -
-: ) 1 - e
= mcounter = T

(a) (b)

FIG. 2.
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Suppose that peC,. Then there is a probability space (X,Z,u)
and events EE,E;E, such that p; =u(EnE,),
ij = 1,2,3,4. In particular

P33 =p(E;) = p(ENE,) + p(ENE,) .

Now  u(E,nE)=1-6 and, by symmetry,
u(E,NE,) = 3 — 6. Hence p;; = } — 24. This condition may
be violated when interference is sufficiently strong. In this
case it may even have p;; > 1.

(¢) Scattering of identical particles: Both the scattering
cross section and the square of the absolute value of the free-
particle propagator diverge when integrated in their domain
of definition so that probabilities in these cases are condition-
al. I shall not bother with precise normalization and assume
that an appropriate normalization was chosen. Consider a
completely elastic proton—proton scattering in which only
Coulomb forces play an effective role. We thus assume that
the interaction is spin independent. Let R,,R, be the upper
and lower halves of the scattering plan and consider the
events

s, - the left proton is scattered into R,

s, - the left proton is scattered into R,.

Let 0 < 8 < 7/2 and let A@be a small angle. The third event is

55 - a proton is detected at (0 —  AG, 8 + 1A6).

The event s, can occur in two ways (Fig. 3). By symmetry
we have

P11 =prob (s,)
=pr0b (SZ) =p22=%y p12=05
and
P =C|f(6) — fim — 6)|°A6,

where C is an appropriate normalization constant and f({8)
is the scattering amplitude.

In order to measure p,; and p,; we have to attach “la-
bels” to the protons in order to identify which process was
taking place, the one in Fig. 3(a) or in Fig. 3(b). Since the
forces do not cause spin interchange we can use opposite
spins on the left and right beam and then we have
P13 = C|f(8)|*A8 and p,; = C |[f(m — 0)|?A¥. Since

IF(8) — flr — O)*#|f(0)|> + [f(mr — )|?,

we have py33#p13 + Po3, even though pyy + py, = 1, 1, =0,
so that pe¢C,. Note that this violation of classicality does not
occur because the spins are coupled with the forces, it is
solely due to the interference in the identity of the particles in
the measurement of p;.

(d) Free-particle propagator: Consider a free particle
moving in one dimension x. Suppose the particle is starting
at x =0 at time t = 0. Let 0 < ¢, <, and consider the two
events

s, - the particle is at (x, — @, x; + a) at time #,,

s, - the particle is at (x, — b, x, + b) at time ¢,.

FIG. 3.
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Let
K(x,,t,; x,5t,)
_ [ 2mifi(t, — t,) ] - mex [ im(x, —x,)?
m 2%(1, — t,)
be the free particle propagator (m is the particle mass) then

X+ a 2
pu=C f K(0,0; &t))dE |
;2+b 2
Pr=C J K(0,0; £t,)dE |
x, — b

where C is an appropriate normalization. In order to mea-
sure p,, we have to introduce an infinite potential barrier (or
slit) of size 2a around x, at time ¢,, remove it immediately
after, and count the rate at which particles arrive at (x, — b,
X, + b). We obtain

x, +b px,+a

K(0,0; §1.2))

P=C
x,—b Jx,—a
2

XK(Esty; €, — &ty — t,)dg, dg,

The value p,, depends crucially on the size of the slit
( =2a). Various examples are given in Feynman and
Hibbs,” where the reader can see that for an appropriate
choice of the parameters we shall obtain

P

P
pz(p )&C .
21 P g

B. Consequences and interpretation

Considered from a purely formal perspective the results
of Sec. I demonstrate that the classical concept of probability
is more restrictive then the quantum notion. Moreover, save
for some boundary cases, every pair (and in fact every multi-
ple) phenomenal distribution has a quantum representation.
The only requirements are that “probability” be a number
between zero and one and that the probability of a joint of
two events is less or equal to the probability of each of the
events. We see therefore that the Hilbert space formalism
associated with quantum theory is in itself void of any phys-
ical content. The content of quantum theory is introduced to
this tautological background by identifying certain particu-
lar operators as physical observables and by the unitary re-
presentations of physical symmetries. This remark is con-
cerned with the numerous attempts to axiomatize quantum
mechanics while overstressing the role of the background
Hilbert space formalism. A large portion of the axioms, in
particular the identification of every self-adjoint operator
(and thus every projection) as an “observable,” are nothing
but a sophisticated guise for the triviality presented in (1.6).

The classical notion of probability is indeed more re-
strictive but it is nevertheless rooted in some very basic intu-
ition. Probability, at least in the discrete case, has always
been associated with the proportion or relative size of a cer-
tain subset of a given set. Thus the probability of drawing a
red ball from an urn containing a well-mixed finite variety of
balls is just the proportion of red balls in the urn. In fact
every discrete (rationally valued) classical distribution can
be simulated or interpreted in terms of a “drawing balls from
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an urn” experiment and surely in every such experiment we
shall obtain a classical distribution. The fact that interfer-
ence phenomena give rise to pair distributions that lie out-
side C, clashes with this preanalytic notion. What is called
“an interpretation of quantum mechanics” is usually an at-
tempt to make sense of nonclassical deviant probabilities. I
shall briefly describe a few attempts of this kind.

(a) The nonrealist view: The trouble with the classical
concept lies with its insistence on ascribing properties to ob-
jects independently of observation. The “balls in the urn”
model of probability is based on such an assumption since it
takes for granted the idea that one always deals with a sam-
ple (balls), which has definite properties (color, composi-
tion, etc.), prior to the experiment. When this assumption is
removed the existence of nonclassical pair distributions is no
longer problematic since the distribution of properties
among the particles in the sample is not fixed prior to experi-
ment but depends on the type of experiment that one chooses
to perform. This interpretation due to N. Bohr “explains
away” the difficulty by appealing to a metaphysical princi-
ple, namely the denial of the reality of experimentally inde-
pendent properties.

(b) Nonlocal view: If one takes the terms “interference”
and even “collapse of the wave function” to signify real phys-
ical processes one may arrive at the conclusion that those
processes are caused by certain ill-understood physical
mechanisms. Perhaps thereis a “field” of a very peculiar sort
that influences the behavior of particles and whose proper-
ties depend radically on slight changes in the boundary con-
ditions (e.g., the closing of a slit in the two-slits experiment).
In this case there is nothing wrong with “probability” per se
and the appearance of nonclassical distributions is an illu-
sion that results from the presence of these unfamiliar casual
influences. Such a “field,” if it exists, seems to violate the
principles of relativity since its influence is felt instanta-
neously all over space (and moreover in certain cases its
influence seems not to decrease with distance). No detailed
theory of the sort exists, but, from a logical point of view, this
general approach seems perfectly consistent.

(c) Classical probability theory should be abandoned:
The observation of phenomenal pair distributions which lie
in the “interference region” should be taken as a primitive
basic fact. As in the case of non-Euclidean space-time geom-
etry this fact contradicts some of our basic intuitions and
again as in the case of geometry this fact does not force upon
us a nonrealistic view (see Sec. III). This approach can be
traced to Feynman'® and is shared by numerous authors.'!
There is an even more radical school that maintains that
classical logic should be abandoned.'? More on this in the
following section.

C. Extreme matrices and quantum logic

If we identify probability 1 with “truth” and probability
0 with “falsity” we see that the classical extreme matrices
u(e)eC, play the role of truth functions. (Indeed “truth”
and “falsity” are usually assigned to propositions, not
events, but we can overcome this difficulty by substituting

1562 J. Math. Phys,, Vol. 27, No. 6, June 1986

for each event a proposition that describes it in an appropri-
ate language.)

Remember that the interpretation of a matrix peL,, is
Py = prob(s;), p; = prob(s;&s;), where s,,...,s, are propo-
sitions (events). So for u(€)eC, we obtain

1, if s; is true,

Uy (€) = {0, if 5, is false,

and u;(€) = €;€; = u; (€)uy(e). This is just the classical
rule “the truth value of a conjuction is the product of the
truth values of the conjuncts.” It follows that every classical
pair distribution peC,, is nothing but a weighted average of
all possible truth assignments to the propositions s,,...,5,.
(This will remain valid when we consider higher multiple
distributions p,; .0, etc.) If peQ,, is in the interference re-
gion this observation ceases to be true. In this case p is a
weighted average of extreme matrices, some of which do not
correspond to classical truth values (we may have
u; =u; = 1,but u; =0). The fact that Q, Dint(L,) and
the analogy with the classical case compel one to consider, at
least tentatively, the idea that all the extreme matrices, not
just the classical ones, correspond to “truth values” in some
extended sense. This means, among other things, that one
should replace the rule “the truth rule of a conjunction is the
product of the truth values of the conjuncts” by “the truth
value of a conjunction is less or equal to the product of the
truth values of the conjuncts.” This is a radical move. It
entails, for example, that the truth value of a complicated
proposition is not a (one-valued) function of the truth val-
ues of its parts. If one extends the concept of “truth” along
these lines one obtains a new propositional logic, “quantum
logic,” which I shall discuss below. Before doing that, how-
ever, I should point to an important conceptual difference
between classical and quantum logic. In the classical case the
concept of “truth” is usually taken to be more profound and
basic than the concept “probability.” The latter is a derived
concept, which presupposes the validity of the classical pro-
positional calculus (as the entire body of mathematics pre-
supposes it). This can be seen easily when we observe that
probabilities are weighted averages of truth values and thus
“probability”’ comes to represent our ignorance of the actual
state of affairs. (This interpretation is apparent in classical
statistical mechanics. One cannot measure the initial condi-
tions of ~ 10% particles and solve the same number of differ-
ential equations, though a solution is known to exist. The
way to circumvent this ignorance is to take the weighted
average of all the possible states given by the Maxwell-
Boltzmann formula.)

It is difficult to conceive of the general quantum case in
the same way simply because the nonclassical extreme ma-
trices are not in @, that is, no quantum system can ever
realize those “truth functions.” Since @, is densed in L, one
can approximate by probability every such “truth value’ but
no more. Hence quantum logic is an idealization or “limit
case” of quantum probability. The former presupposes the
latter and not the other way around.

Keeping this qualification in mind we can proceed to
describe the new formal logic. As in the classical case, let
$15521-.55,,5... bE a set of symbols called atomic propositions.
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The set H of (well-formed) propositions is defined by induc-
tion on length of formulas as follows: (a) every atomic pro-
position is a proposition, (b) if a is a proposition so is — a
(read “not @), and (c) if a,b are propositions so is a&b
(read “aand b ’). Herea V b (read a or b) is a shorthand for
—(—a&—b) and a—b (“a entails ) is a shorthand for
—aVb.

We have already remarked that in quantum logic the
truth value of a complicated proposition is not a function of
the truth value of its atomic constituents. Thus it will not
suffice to define the notion of “truth” for atomic proposi-
tions alone and we have to define it by induction on length of
formulas as follows.

Definition 2.1: A quantum truth function is a function 6
from the set of well-formed formulas IT into {0,1} satisfying
the following:

(i) for every atomic proposition s;,
0(s;) =0 or 8(s;) = I;
(ii) 6(—a) =1 —6(a);
(iit) O(a&bd) = 0(b &a)<6(a)0(b), 6(a&a) = 6(a);
(iv) if 8'(b)<8O'(c) for all quantum truth functions 8
defined for b and ¢, then G (a&b)<0(ake),

for all a€ll.
The inductive character of this definition is evident from
(iv). From the above axioms we have by definition

0aVb) =1—60(—a&—b)>0(a) +6(b) — 8(a)8(b)

and also 8(a—b) = 8(—aV b). Hence 8(a—b) = O entails
6(a) =1 6(b) =0 (but not necessarily the other way
around). If equality obtains in (iii) for all a,bell then B is a
classical truth function.

A classical tautology (logical falsity) is a proposition a
such that 8(a) =1 [resp. 8(a) = 0] for all classical truth
values 6. Hence a quantum tautology (falsity) is a proposi-
tion for which 6(a) = 1 [resp. 8(a) = 0] for all quantum
truth functions. Therefore there are fewer quantum tautolo-
gies and falsities then classical ones. In order to decide
whether a given proposition g€ll is a classical tautology it is
sufficient to check all 2" possible truth value assignments to
its atomic constituents s,,...,5,,. This is no longer true in the
quantum case but the number of quantum truth assignments
is nevertheless bounded by 2%, where k is the number of well-
formed subpropositions of . [This also means that the in-
ductive definition (Definition 3.1) can be effectively ap-
plied. ]

Many classical tautologies are in fact quantum tautolo-
gies. These include aV —a, a—a Vb, a&kb—a, — —a<a,
- (a&b)—>(—aV —b), (De Morgan rule), and
(a&b) V (a&c)—a& (b V ¢). The proof of the last two tauto-
logies is based on a repetitive use of the inductive rule (iv).
Note, however, that a&(bV c)—(a&b) V (a&e) is not a
quantum tautology though it is a classical one. (To see that,
it suffices to consider atomic propositions a,b,c.) Therefore
the distributivity law is not a quantum tautology. Indeed it
was the nondistributivity of the lattice of closed subspaces of
a Hilbert space that led Birkhoff and Von Neumann'? to
their (admittedly heuristic) argument that quantum me-
chanics may “force” upon us a novel logic. With the identifi-
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cation of extreme matrices as “truth functions” this conclu-
sion becomes more motivated. Definition 3.1 does not suffice
to derive all the logical relations that obtain in the lattice of
closed subspaces of a Hilbert space and it is not clear whether
any finite or even recursive set of rules will achieve that. In
this respect Definition 3.1 is only minimal.

ill. QUASICLASSICAL MODELS OF QUANTUM
PROBABILITY

A. The geometric analogy

Various pair distributions observed in microphenomena
and predicted by quantum theory are not classical and this
fact clashes with a strong “realistic” intuition regarding
probability. It appears prima facie that one cannot recon-
struct quantum probability if one assumes the “balls in an
urn” picture that we usually associate with this notion. The
question that I shall address in this section is whether we can
nevertheless extend the classical concept of probability to
cover the whole range of Q,, while still retaining the essen-
tial realistic aspects of the classical notion. Can we, in other
words, conceive of physical objects with fixed properties dis-
tributed so as to give rise to deviant probabilities on the
phenomenal level?

A somewhat analogous problem faced mathematicians
a century ago—I refer to non-Euclidean geometry. After
centuries of futile attempts to derive Euclid’s fifth postulate
(the parallel axiom) from the other four postulates Lobat-
chevsky decided to turn the tables and assume the validity of
a negation of that postulate. He obtained a formal system,
hyperbolic geometry, which appeared to be consistent,
though Lobatchevsky was not able to prove that. The com-
pleteness theorem of predicate logic (due to K. Gddel)
states that a formal system of axioms is consistent if and only
if it has a model. So the problem of consistency boils down to
the following question: Can one conceive of geometric ob-
jects (call them “lines”) whose properties and relations ex-
emplify the formal properties and relations postulated in hy-
perbolic geometry? The affirmative answer was given by F.
Kline. He constructed a so-called ‘“Euclidean model of hy-
perbolic geometry” where hyperbolic lines are in fact seg-
ments of Euclidean curves and the Euclidean metric is re-
placed by another metric (which is nevertheless defined in
terms of the former).

In our case we face no formal problem of consistency but
the question is otherwise similar. We want to construct a
“Kolmogorovian (i.e., classical) model of quantum prob-
ability” where “events” are subsets of a given set so that the
family of all events forms a Boolean algebra, and where
“probability” is the measure of the relative size of these sets.
These events will play a role analogous to that of the hyper-
bolic lines and the “probability measure” will play a role
analogous to that of the hyperbolic metric.

On a less formal level this will enable us to conceive of
quantum probability in terms of a “balls in an urn”” model.
Surely we cannot expect to achieve our goal with finite sets of
objects (balls) since the laws of classical probability in the
discrete case are simple consequences of arithmetic. When
we move from the finite domain to the continuum an appro-
priate model can be constructed. I shall proceed first with
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the formal properties of the model and discuss its physical
interpretation immediately after.

B. Representing L,, by outer measure

Consider the (classical) probability space ([0,1],2,m),
where 2 is the family of Lebesgue-measurable subsets of the
interval [0,1] and m the Lebesgue measure. One of the con-
sequences of the axiom of choice is that not every subset of
[0,1] is an element of 2. With a given arbitrary set A C [0,1]
we can nevertheless always associate an outer measure:

m(4) =inf{m(G); G4, Gopen}. (3.1)

If A is Lebesgue measurable, then m(4) = m(4). Note that
the outer measure is subadditive and not always additive,
that is if 4,,4,C [0,1], 4,04, = &, then

m(A4,ud;)<m(4,) + m(4,) (3.2)

and a sharp inequality may obtain when 4,,4,¢3. This prop-
erty is desirable. If E,,E, are two projections in a Hilbert
space H such that E, A E, = 0 and if Wis a density operator
on H we have

tr[ W(E,V E,) 1<tr(WE)) + tr(WE,) (3.3)

and the inequality may be sharp (a sufficient condition for
equality is that [E,,E,] =0, which means in this case
E,l1E,). Another formal property that indicates that the out-
er measure can serve as a model for quantum probability is
given by the following theorem.

Theorem 3.1: There exists a decomposition of the inter-
val [0,1] into a continuum of pairwise disjoint subsets each
having outer measure 1.

The proof involves the axiom of choice.'* Needless to
say, none of the sets whose existence is postulated in the
above theorem is Lesbesgue measurable. Solet 4,,4,C [0,1]
be two subsets such that 4,4, =0, m(4,) =m(4,) = 1.
The matrix p; = m(4,n4;), for ij = 1,2, is just (§ 1), the
only nonclassical extreme matrix of L,. This is, of course, no
accident.

Definition 3.1: A matrix peL, has an outer measure rep-
resentation if there are subsets 4,,4,....4,, C [0,1] such that
py = m(4,04;).

Let O, be the set of all peL, which have an outer mea-
sure representation, then we have the following theorem.

Theorem 3.2: 0, =L,.

Proof: 1 shall show first that O, is convex and then that
every extreme matrix #€& , is an element of O,. This will
complete the proof since L,20,Dco(&,)=0L,. Let
p,p'€0, and 0 <A < 1. Ishall showthat Ap + (1 — 1)p'c0,.
By definition there are sets 4,,...,4,,, 4 | ,....4 , C[0,1] such
that p; = m(4,0d4;), p; =m(4{nd;]), for ij=12,.,n.
Consider the function f(¢) = Ar. It maps the interval [0,1]

onto the interval [0,A]. For BC[0,1] let f(B)
={f(E); tB}. Since f is linear we have
SBC) =f(B)nf(C) and, for every BC[O0l],

m(f(B)) = Am(B) (this can be proved first for open inter-
vals, then for open sets and the claim follows). Put
C; =f(4,). Then from the above remark we obtain
m(CiNC;) = A(4,04;) = Apy.

Consider the function g(¢) =4 + (1 — 1)t. From a
similar argument we get, for C/ =g(4 ) = {g(¢); te4 },
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m(CinC))=(1-A)ym(d;nd]) =(1-2)p;.

Now put D, = C,uC!. Since C; C[0,4 ] and C; C[4,1], for
i=12,...,n, we have

m(D;,nD;) = m(C;nC;) + m(CinC;)
=Ap; + (1 =A)pj,
for i=12,..,n,

and thus O, is convex.

Let uc# , be an extreme matrix. We shall prove that
u€0,. By Theorem 3.1, we can decompose interval [0,1]
into n? pairwise disjoint subsets each having outer measure
1. Denote these sets by B ,,...,B 1,815 sBans s BupseesBon
We have B;nB,, = for (ij)## (kl) and m(B;) =1, for
i,j=1,2,...,n. Foranarbitraryset BC [0,1], put B°® = @and
B' = B and define

A, = U BB M.
k=1
Then m(4,) =0 if and only if u, =u,; =0, for all
k = 1,2,...,n. Since u,,; <u, this occurs if and only if u,, = 0.
Let is#j. Then 4,4, =B UB ;' then m(4;n4;) =0 iff
u; = 0. Since in all other cases, m(4,n4;) = 1, we conclude
that m(A4,n4;) = uy, fori,j = 1,2,...,n. Q.E.D.

i

C. Outer measure and probability

I have proved that every peL, (and in particular every
pe@, ) can be represented by subsets of [0,1] together with
their outer measure. On a less formal level I shall indicate
how this fact can be interpreted in terms of events and their
probabilities. Rather then providing an actual physical ex-
ample'® I shall describe an artificial setup whose advantage
lies in its simplicity. I hope this will convince the reader that
a “balls in an urn” model of quantum probability is possible.

The “urn” is just the interval [0,1] and the “balls” are
its points. Assume that every point has a definite fixed color
red or blue (not both). This means that every point radiates
either red or blue light. Consider first the classical case
where the set of red points 4 and the set of blue points B are
Lebesgue  measurable. By  definition, AnB =,
AuB = [0,1]. Suppose that the intensity of red (blue) light
from an interval is proportional to the measure of the set of
red (blue) points in that interval. If we choose normaliza-
tion such that the total intensity (red + blue) is 1 we obtain
that the intensity of red radiation is m(4) and the intensity
of blue radiation is m (B). These intensities can be measured
by introducing appropriate filters. (We filter out the blue
light when we measure the intensity of red and vice versa.)
Suppose now that 4,8 are not measurable and moreover that
the rule associated with intensities now reads “the intensity
of (red, blue, or any) light from an interval is proportional to
the outer measure of the set of radiating points in that inter-
val.” If we keep the normalization convention as above we
see that intensities are no longer additive, the total intensity
is 1 while the red and blue intensities are m(4), m(B) and
we may have m(4) +m(B)>1. In particular if
m(A) =m(B) =1 we obtain the following strange situa-
tion: If we introduce both filters we detect no radiation
(AnB = ©@); if we introduce any one of the filters no reduc-
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tion in the radiation intensity is observed.

This is of course only a metaphor. The question is what
can prevent us from associating with every physical system a
fixed set of “hidden properties” (call them “colors”) and
interpret every physical experiment as a process by which
some of these properties are filtered out. If the distribution of
these properties is sufficiently wild we shall obtain nonclassi-
cal probabilities on the phenomenal level. In light of
Theorem 3.2, this can be done for every peL,, that is, for
every conceivable experimental result. I do not claim that
one ought to interpret quantum mechanics in this way or
even that it makes physical sense to do so. My only claim is
that one can interpret microphysical phenomena by such
“hidden variables” and obtain a perfectly consistent picture.

IV. CONCLUSION

What the previous discussion demonstrates, I believe, is
that the problem of realism, the reality of microphysical
properties, is irrelevant to the understanding of quantum
mechanics. One can, if one wishes, conceive of quantum pro-
babilities as resulting from distributions of fixed properties.
One can also decline to do so. In that respect quantum me-
chanics is not different from any classical physical theory.
One can conceive of classical gravitational fields, say, as real
objects ““feeling up” space (a realistic attitude) or one can
think of gravitational fields as mathematical tools whose
purpose is to systematize and organize a complicated set of
phenomena (an instrumentalistic approach). In classical as
in quantum physics, both alternatives are compatible with
the experimental results. The problem of physical realism is
a metaphysical problem and no observation or experiment
bears direct relevance to it. An argument for or against rea-
lism is thus inherently a metaphysical argument and should
be evaluated accordingly. To claim otherwise is to commit
what philosphers call a category mistake.

Bohr’s interpretation, I believe, falls in this trap. His
unnecessary focus on the metaphysical problems blurs the
issue at hand. A careful rational analysis would reveal, I
believe, that only two coherent alternatives exist.

(a) “Interference” and “collapse of the wave function”
are physical processes caused by unknown physical mecha-
nisms. One can take a realistic or instrumentalistic approach
regarding that “‘mechanism” but regardless of one’s attitude
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one can hope to control and manipulate these processes and
obtain results which transcend or even contradict quantum
mechanics.

(b) “Inteference” and “collapse of the wave function”
are names for the fact that the probability theory associated
with quantum theory is nonclassical. As in the case of space-
time geometry one can understand this probability theory in
realistic or in instrumentalistic terms, but, regardless of
one’s views, one should try and understand the properties
and extension of this new strange notion.

No decision between these two alternatives currently
exists but the question of which is the correct interpretation
is in large part empirical, that is, if alternative (a) is the
correct one we shall find it out sooner or later."
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The Aharonov—-Bohm effect in general gauge theories, for particles in gauge-curvature-free
regions, is studied using the quantum mechanical propagator in the form of a Feynman sum over
paths. Following Schulman [L. S. Schulman, Techniques and Applications of Path Integration
(Wiley, New York, 1981) ], such paths are divided into their homotopy equivalence classes, and
the contributions from each class of paths of the Feynman sum are identified with propagators of a
wave equation in the universal covering manifold of M, resulting in a simple form for the
propagator on M. A group homomorphism from %, the fundamental homotopy group of M, to
the gauge group G is shown to characterize possible Aharonov—Bohm effects, which can be
divided into two types, Abelian and non-Abelian, according to whether -#*, the image of this
homomorphism, is Abelian or non-Abelian. For a non-Abelian Aharonov-Bohm effect, it is
necessary that both .7 and G be non-Abelian. Simple examples illustrate the theory.

I. INTRODUCTION

In this paper, we study a particle moving in a multiply
connected manifold M, under the influence of a gauge poten-
tial for a matrix gauge group G, given by the one-form
b*X, - d1, where the X, are generators of G. Here G is taken
to act on particle wave functions by matrix multiplication. It
should be noted that M describes only the spatial position of
the particle, time being treated separately, b*X, « d1, repre-
senting only the spatial components of a gauge potential, the
time component (scalar potential) assumed zero. The gauge
potential is also assumed to have zero gauge curvature.

D(b*X, -d1) =0. (L1)

Such a situation occurs when the particle is excluded from
some region of space in which magnetic fluxes are confined.
The physically observable difference between the case
b*X, - d1+£0 and the free-particle case b*X, +d1=0is the
Aharonov-Bohm (hereafter abbreviated by AB) effect.’

We use the Feynman approach to quantum mechanics,
in which the propagator is given as a sum over paths. Follow-
ing Schulman,’” the paths are partitioned into their homo-
topy equivalence classes, Feynman sums over paths in each
class giving homotopy propagators, the whole effect of the
gauge potential being to multiply these homotopy propaga-
tors by different gauge phase factors. For a simply connected
space, all paths between two points are in the same homo-
topy class, and the effect of the potential is to multiply the
free-particle propagator by a single gauge phase factor, so
the potential has no physical effect. For a multiply connect-
ed manifold, the potential can have a physical effect because
the gauge phase factors can be different for different homo-
topy classes.

The homotopy propagators are related to propagators
on the universal covering manifold of M, leading to an ex-
pansion of the propagators in terms of eigenfunctions of a
Hamiltonian on the covering manifold.

It is shown that an AB effect is characterized by a homo-

) Present address: Department of Physics, Yale University, New Haven,
Connecticut 06520.
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morphism from the fundamental homotopy group of M to
the holonomy subgroup of G, the effect being Abelian or
non-Abelian depending on whether the holonomy group is
Abelian or not. The effect proposed by Yang and Wu? for
G = SU(2) is shown to be Abelian despite the fact that G is
non-Abelian.

To illustrate the theory, the case originally dealt with by
Aharanov and Bohm' of a charge near a long straight sole-
noid is used. Also an SU(3) gauge potential is given to show
how a non-Abelian AB effect might arise.

Units in which #, ¢, and the gauge coupling constant are
set to 1, are used throughout.

Il. THE PROPAGATOR

The Feynman sum form of the nonrelativistic propaga-
tor for the motion of a particle under the influence of the
spatial components of a gauge potential b*X, - d1 (b {X,,
the time component assumed zero), is taken as

K, (x',t"x,¢t)

=| or exp( f b*X, -dl) exp(iS(T)),

Xt r

2.1

a sum over all paths I': [ft']>M from x to x’
[[(¢) = x, T(¢') = x'}], where Sis the free-particle classical
action on particle trajectories, and

exp (J-b"Xk . dl)
r

is Yang’s gauge phase factor,>* generalizing the phase factor
used in electromagnetism.’ It is always considered as path
(or time) ordered. The propagator satisfies

Ky (x',55x,8) = 8pr (x',%) (2.2)
and
] ., ,
15;7—1‘1,, K, (x',t;0,t) =0, t'>1t, (2.3)

where 8, is the delta function on M and H, is the Hamilton-
ian operator on M, acting on the first variable x’. Here K,
and H,, are used to denote K, and H, when b*X, -d1=0.
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iil. HOMOTOPY PROPAGATORS

Following Schulman,’ we rewrite the propagator in the
form
K, (x',t"x,t)
x',t’
= ¥ 7 fFepr b*X, +d l)exp(iS( ),
r

SeF(X',t":x,0)/x,t
3.1

where F(x,,t,;x,t) is the collection of all homotopy classes of
paths T: [#,¢']—M fromx tox’, and &I indicates a Feyn-
man sum over only those paths in class f. The homotopy
class of a path I is denoted [T"]. Physically, [T"] is impor-
tant because for gauge fields where (1.1) holds, the gauge
phase factor depends only on [I']. That is, if I'€[I"], then

exp(f b*X, -d l) = exp(f b*X, -d l).
r r

This is proven in the Appendix. In view of this fact, we can
define, for feF(x',t';x,t),

(3.2)

eprb"Xk . dl) = exp(fb"Xk . dl), (3.3)
'f T
for any I'ef (i.e., f= [T']). Then (3.1) becomes
K,, (x',t';x,t)
= ¥ exp(fb"X L od l)l(f (x',t'x,0), (3.4)
SEF(x',t"x,1) f

where the homotopy propagator of class fis defined by
x',t"
2,T exp(iS(T)).
X,

Thus the AB effect is obtained by multiplying the homo-
topy propagators by gauge phase factors. In general, these
factors will vary for different homotopy classes, permitting
|K, |?# |K,|?, and producing an observable effect.

K/ (x't'xt) = (3.5)

iV. THE COVERING MANIFOLD OF ¥

Let C be the universal covering manifold of M, with
covering projection 77: C—M. Again following Schulman? in
noting the correspondence under projection between paths
in M of a particular class feF(x',t ';x,t) and paths in C from
yer~!(x) to a particular point yjer~'(x"),

Vot
K/ (x',t":x,t) =ff D, expliS(my)), 4.1)
Wt

where the right-hand side is now a sum over all paths in C
from y to y;. Also from the correspondence we can define

g0y = exp(f b*X, dl)
Ty
for any path ¥ in C, from y to y’, two points in C. (Note the
line integral above is performed over path 7y that lies in M.)
Equation (3.4) then becomes

4.2)

K, (x',t"x,t)
Ve
= 3 0w Dremisem)
JEF(x',t";x,8) it
Yt
= 2 &UW| DyexpliStmy)), (4.3)
yer—' (x) 't
1567 J. Math. Phys., Vol. 27, No. 6, June 1986

for any yemr~'(x). Defining a propagator on C,

Wt

Ke(t'wt) =] DyexpliS(my)), (4.4)
't
then gives
K, = 3 g 0K Oy, (45)

yer(x')
for any yer —'(x).
The free-particle Hamiltonian H, being a local operator
on M, can be lifted” to an operator on C, which we still de-
note by H,,. Then K* satisfies the free wave equation’

(ig‘:—, - HO)K‘(y',t 'y =0, t'>t, (4.6)
on C, where H,, acts on the first variable y’. By the Feynman

sum form (4.4), of K¢, it is clear that

Ke(y'stypt) =6.0'p)- (4.7)
Equations (4.6) and (4.7) then tell us that®
K(yt'pt) = Sr009,00e " =70 (4.8)

where the ¢, are any orthonormal, complete set of eigen-
functions of H,, on C, with eigenvalues E, , and X, denotes
summation/integration over discrete/continuous indices n.
By (4.5) and (4.8),

K, (x',t'x,t)

>

yer—(x')

&P I, e =T,
4.9)

V. THE FUNDAMENTAL HOMOTOPY GROUP

Choose a particular y;er~—"'(x’). Then if y is a path in C
from y to y;, and @, is another path from p; to y'er—'(x'),
then yw is a path from y to y'. So, from (4.2),

&0y = exp(f b X, - dl)

(wa)

= exp(f b*X, +d l),
(my) (o)

and since our gauge phase factors are path ordered, (5.1)
can be written

&Y = CXPU b*X, +d l)CXp(f b*X, -dl).
Lad L)
g (5.2)

(5.1

Substituting into (4.5) yields
K, (x',t'x,t)

= exp(j b*X, -dl)
Ty

X Z exp( b"Xk-dl)Kc(y't’;y,t). (5.3)
Ty

yer™(x")

Now if the particle is known to be at x at time ¢, the probabil-
ity for it to be at x’ at time ¢’ is
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| Ky (x',2"x,8) | 2

Z exp(f b*X, - dl)K“(y’,t ‘p,b)
(x") T,

-
yemr 4

2

(5.4)

Thus the whole AB effect is produced by the gauge phase
factors

{exp(f b*X, - d l)
ﬂﬂ)yt

Because these elements of the gauge group characterize any
particular AB experiment being done, we proceed to investi-
gate them.

First notice that by (3.3)

exp(f b*X, - dl) = exp(J b*X, - dl). (5.5)
W [ﬂm},r]

”
Here 7o, is a closed path in M from x' to itself. Therefore
[7w, 1eF(x',t ";x,t). By the correspondence between paths
in C and paths in M, as y’ ranges over 7 '(x'), (7w, ]
ranges over all of F(x',¢";x,t). So the subset of gauge phase
factors characterizing the AB effect in (5.4) is

[exp(jb"X o d l) feF(x',t"x,t) ]
i

A natural group structure can be put on F(x',¢ ";x,t), yielding
H, the fundamental homotopy group’ of M. The map

fe%r—»exp(‘[ bX, -d l)
!

is a group homomorphism® from the fundamental homotopy
group into the gauge group G. The set of phase factors char-
acterizing the AB effect in (5.4) is the image of 7 under the
homomorphism, and so a subgroup of G,

H* = [eprb"Xk ~dl) ‘fed‘?”]<G.
f

Also F* is just the holonomy group of the trivial vector
bundle over M, with connection b*X, +d 1.

We use the group ##7* to classify the various AB experi-
ments. In particular we have two types:

(1) Z*<G (Abelian),

(2) Z*<G (non-Abelian).

The first type contains, for example, all experiments in-
volving only electromagnetism, all subgroups of U(1) being

J

yer~'(x') ]

(5.6)

Abelian. The experiment originally suggested by Wu and
Yang? and performed by Zeilinger et al.,’ of a nucleon out-
side a single tube of isotopic spin magnetic flux is also of the
first type, since R* with the region of flux removed has 5%
isomorphic to the integers, an Abelian group. It follows that
7%, the image of 7 under a homomorphism, is an Abelian
subgroup of the non-Abelian gauge group SU(2). The sec-
ond type consists of experiments which exhibit true non-
Abelian AB effects, since they are characterized by non-
Abelian subgroups of the gauge group.

VI. EXAMPLE A: U(1) AB EFFECT NEAR A THIN
STRAIGHT MANGETIC FLUX

We check our theory by applying it to the simple exam-
ple, first treated by Aharonov and Bohm,' of a charge ex-
cluded from an infinitely long straight cylinder of negligible
radius, containing a magnetic flux 27a. We are interested
here only in the two dimensions perpendicular to the flux. So
M is to be R? with one point removed and the magnetic flux
confined to the removed point, which we take as the origin of
polar coordinates; C is (0, ) X R, with coordinates (r,8).
The projection 7: C—M is given by

(r,6 + 2mm)—(r,0), for0<O<2m.
The vector potential is given by
iA(r,0) = i(a/r)8. (6.1)

Let(o(4),¢(A))beapathinC from (7,8) att to (»',0 ) att’.
By (4.2) and (6.1),

ga((r,0") = exp( f

T(p,$)

iA-dl)

= explia(0' — 0)). (6.2)
The Schrédinger Hamiltonian is
1 42 14 1( J . )2
H=-—— —+—4 == . 6.3
4 2m 6r2+r(9r+r2 a0 (6.3)

Notice H, is an operator on either M or C. A complete,
orthonormal set of eigenfunctions in C, of Hy, is

{JIA (pr)e?? |p>0, AR},
with eigenvalues p>/2m, where the J |, | are Bessel functions.
Note, we do not require A€Z, since periodicity in & is not
required in the covering manifold C. By (4.9) and (6.2),

K ((7,0),t'5(r,0),t)= z—l—f J J%, () (pr)expli(A + @) (8" + 2mm — 6) lexp[ — i(p*/2m) (¢’ —¢)]dA dp
— 0040

meZ 27

1

=S—| It @r)J_o (pr)explil(8' — 6)lexpl —i(p*/2m) (¢’ — 1) ldp,

iz 2mJo

since
ze—zfrim(l+a) =25(1_ (/1 +a)).
meZ leZ

Then (6.4) is just the expansion of the propagator in the
complete orthonormal set of eigenfunctions on M of H,,,

{J|I—a| (Pr)e”e IIEZ, P>O}
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(6.4)

I

Note that the eigenfunctions on M are periodic in 8, corre-
sponding to the single valuedness of wave functions,'® even
though the eigenfunctions on C were not periodic in 6.
Berry'! has considered this example using a method in
which a single-valued wave function is given by a sum, in
which the individual terms are not single values. Bernido
and Inomata'? and Gerry and Singh'? also considered this
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example, evaluating Feynman sums explicitly. Schulman*
was the first to take the approach that we have, but did not
explicitly relate the resulting propagator with eigenfunc-
tions in M of the full Hamiltonian H ,.

Vil. EXAMPLE B: SU(3) AB EFFECT NEAR TWO THIN,
STRAIGHT MAGNETIC FLUXES

In this example we will display an SU(3) gauge poten-

tial on a manifold, whose gauge curvature vanishes, but
whose holonomy group #°* is a non-Abelian subgroup of
SU(3). If an experiment could be constructed, described by
this potential, for example, then it would produce a true non-
Abelian (type 2) AB effect.

Once again ignoring the third spatial dimension, we
consider the potential in the x-y plane, given in Cartesian
coordinates by

(7.1)

I
bX, = [aIVtan_l( 4 )—aIV s(x + l)tan_‘(L) ]X,
x+1 x+1
+ [aZVtan“( b4
x J—

where s(x) is any smooth function that is zero in a neighbor-
hood of x =0 and s(x) = 1 for all x>1; X, and X, are any
pair of noncommuting generators of SU(3). The potential is
singular at the points ( + 1,0) in the x-p plane. We take our
manifold M to the x-y plane with these two points removed.
The gauge curvature vanishes on M.

Let I be a path in M from the origin to itself that encir-
cles ( — 1,0) once and does not enter the region x > 0. Now
by the properties of s, b2 = 0 in the region x<0, to which I'
belongs. Therefore

exp(f b*X, - dl) = epr b'X, - dl).
r r

Now s(x + 1)tan~*(y/(x + 1)) is defined on the whole x-y
plane, for although tan~'(p/(x + 1))issingular at ( — 1,0),
s(x + 1) = 0in a neighborhood of ( — 1,0). Therefore,

JaN(ﬂx + l)tan_‘(—L))- dl=0.
r x4+ 1

So

fbl cdl= Jalwan—l(—y—) .dl.
r r x4 1

This is most easily evaluated by putting polar coordinates on
the plane with the origin at ( — 1,0). Then

(7.2)

(7.3)

(7.4)

a,V tan~ '/ (x + 1)) = a,V0 = (a,/r)6, (7.5)
fle, -dl=f @9 (dr#+rdoo)x,
r r r
= fal deXl
T
= 2o, X, (7.6)

and we see that the gauge potential describes a thin X, mag-
netic flux passing through the plane at ( — 1,0), from which
our particle is excluded. Similarly, it describes a thin X, mag-
netic flux at (1,0).

We have shown that exp(2#7a,X,) is an element of 777*,
the holonomy group. By similar means it can be shown that
exp(2mra,X,) is an element of #** as well. Since X, and X,
do not commute, a; and a, can be chosen so that
exp(27ra,X,) and exp(27a,X,) do not commute, making
Z7°* non-Abelian.
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) - aZV(s(l - x)tan"( 24 ))]Xz,
1 x—1

{

VIil. CONCLUDING REMARKS

We have seen that the AB effect of the gauge potential in
a gauge curvature free region M, is described simply by mul-
tiplication of the homotopy propagators by certain gauge
phase factors. The homotopy propagators are related to
propagators on the universal covering manifold C, and can
be expressed in terms of eigenfunctions of the free particle
Hamiltonian on C. We saw that AB effects are closely relat-
ed to the topology of M, and for a non-Abelian AB effect it is
necessary that 77, the fundamental homotopy group of M,
benon-Abelian. The SU(2) AB experiment proposed by Wu
and Yang® could only test for the presence of an Abelian
subgroup of the gauge group. A true non-Abelian AB effect
is required to indicate a non-Abelian gauge group.

APPENDIX: PROOF THAT THE GAUGE PHASE FACTOR
DEPENDS ON ONLY THE HOMOTOPY CLASS OF A
PATH

(i) First notice that, if w is any closed path, from a point
z to itself, then, if

exp( f b X, «d l) =17 the identity,

we must have

exp(f b*X, - dl) =1,

where ' is the result of changing the initial (and final) point
of w, z, to some other point of the path, 2’ (that is, »’ tra-
verses the same points as w, but in a rotated order). The
reason for this is as follows. Let y be a path from z’ to z, which
is also a segment of the path . Clearly, ywy~' and »'yy !
have the same trajectories. Keeping in mind that gauge
phase factors are path ordered,

epr b*X, - d l)
= epr b*X, *d l)expg b*X, «d l)
o’ 4
Xexp(f b*X, - dl)
y—!
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= exp(f b*X, -dl)
w'yy!

= exp(f b*X, - dl)
yoy™!

= epr b*X, -d l)I exp(f b X, - d l)
4 r!

=1I (Al)

(ii) Let I" and I'" be homotopically equivalent paths in
M. Therefore I''T" ~! is a closed path. The equivalence of the
paths implies there is a simply connected surface in M whose
boundary is I'T"~ . Divide this surface up into many infin-
itesmal parallelograms, with boundaries ;. For each of
these,*

exp(J brX, - dl) =I+f% X, dxtdx}, (A2)

where the ith parallelogram has sides dx; and dx; and f, is
the gauge curvature at the ith parallelogram. But by (1.1),
S, =0on M. Therefore

exp(f b X, * dl) =1

Now the phase factor for the boundary of two adjacent par-
allelograms can be easily written as the product of the phase
factors for the individual parallelogram boundaries, giving /
because of (A3). Using the result in (i), one can continue
this process, progressively getting bigger regions on the sur-
face and showing that the phase factors for their boundaries
are just the identity, until one finally gets

(A3)

exp b*X, -d 1) =1 (A4)

rr-!
Path ordering of phase factors then implies
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exp(f b*X, «d l)epr b X, -d l) =1,
r r-!
exp(f bX, -d l) = epr b*X, -d l).

r r

SO
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A couple of Reeh—~Schlieder-type density results are proved to hold in one- and #-body
Schrodinger theory, that is, it is proved that states localized at time zero in an arbitrarily small
open set of R” are already total after an arbitrarily small time (which implies much more than the
well-known acausal behavior of nonrelativistic theories). It is shown that there exists a close
connection to the so-called “unique continuation property” of elliptic partial differential
operators. Furthermore, a certain machinery of analytic continuation is developed and the notion
of generalized propagation kernels is introduced, which also might be of use elsewhere (e.g., in

scattering theory).

I. INTRODUCTION

Analytic continuation of physically interesting quanti-
ties, e.g., n-point functions or S-matrix elements, has proved
to be of great importance in quantum field theory, in particu-
lar in the so-called “Wightman theory.” The proofs of many
of the central results in this field rely, sometimes almost ex-
clusively, on the technique of extending objects, originally
only defined over R or R+ V" (where v is the space dimen-
sion and v + 1 is the dimension of space-time) into certain
domains of Cor C** ", neN.

This is evidently not so in Schrodinger theory, and it is
probably a widespread belief that the applicability of power-
ful methods like these is typically restricted to the relativistic
regime, where one has the so-called “spectrum condition,”
“locality,” etc. We have shown previously, however, that
several of the results carry over to the nonrelativistic re-
gime.! In this paper, we will pursue two different strategies
to prove a couple of resulits, which we think would be diffi-
cult to prove, without using the techniques developed below,
in Schrédinger theory proper. One relies on an interplay of
relatively deep results of functional analysis and a simple
analytic continuation argument; the othér employs exclu-
sively spectral properties of energy momentum to develop a
certain machinery of analytic continuation. Even in the sim-
plest case, free motion of one particle, the results seem not to
be easily accessible without using the methods described
here.

We will proceed as follows. In the Sec. II we will exhibit
the close connection between what we will call a Reeh—
Schlieder property of an arbitrary domain UCR” or R™"
(for the origin of the notion in Wightman theory see Ref. 2)
and two seemingly different groups of concepts and ideas
from the realm of classical functional analysis, one running
under the catchword “unique continuation property,” the
other comprising the various notions of “generalized eigen-
function expansions™ of Schridinger operators. By “Reeh—
Schlieder property” we mean roughly that the wave func-

*) Permanent address: Institute for Theoretical Physics, Universitit Géttin-
gen, West Germany.
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tions being localized in an arbitrarily small domain UCR™"
at time O are already total in the full Hilbert space L *(R*")
after an arbitrarily short time interval. (Note that this im-
plies much more than the feature, well-known at least for the
free time evolution, that a wave function is more or less
“everywhere” after an arbitrarily short time. However,
without this property the stronger result could, of course,
not hold.) These notions will be made more precise in Sec.
II.

While in the Sec. II analyticity plays only a minor role,
we have to rely heavily on it in the rest of the paper where we
develop another sequence of ideas, pursuing more or less the
goal of analytically extending both space and time transla-
tions into certain domains of C* ", That is, the first part
carries a more functional analytic flavor while the latter
draws more on procedures known to be successful in relativ-
istic quantum field theory. Furthermore, we think the con-
cepts we develop in the latter part, such as, e.g., “generalized
propagation kernels,” also will be of use elsewhere (for ex-
ample, in a paper on a new general approach to scattering
theory in energy-momentum space, which is in prepara-
tion).

To indicate some of the technical steps, we will start by
rewriting n-body Schrodinger theory in the form of a certain
time-dependent bilinear functional W(X,Y;t) lying in
S'(R*™"), and acting on the wave functions at time 0 by
using the nuclear theorem. These functionals contain the full
physical information of the theory. We show that these
“Wightman functions” of Schrodinger theory can be natu-
rally viewed as restrictions of more complex functions lying
in a bigger space, i.e.,

WX 1yeisX s Yiseons Vst )W (X s L §0000) (1.1)

The distributional Fourier transform of this extended W has
nice support properties in the energy-momentum variables
{(@;,k;)} corresponding to {(x,,t,)}, which allows us to
make an analytic extension of the original W(X,Y:t)
[X=~(x,,....X, ), etc.] into a certain domain of C***+ V**, The
“values” W(X,Y;t) then turn out to be the boundary values
of an analytic function over R™* V" + iT"CC*+ V" when
we approach the real boundary R*"*! (resp. R+ "),
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Il. THE CONNECTION BETWEEN THE REEH-
SCHLIEDER (RS) AND THE UNIQUE CONTINUATION
PROPERTY

To begin with, we have to define exactly what the RS
property is to mean. So let # =L*R™), m=vn,
H= — A+ V,Ubeanopenset C R™, and I'be an arbitrary
time interval about # = 0, then

S(U, I) : ={exp( — itH)®; supp ® C U, tel} . (2.1)

Definition 1: U has the RS property if S(U, I) is total in
X for some 1.

We want to show that, in fact, for a large class of poten-
tials and practically every arbitrarily small U and 1, S(U, I)
has this property. To prove this we draw on two relatively
advanced topics of elliptic partial differential operators, de-
scribed by the catchwords (i) unique continuation property
and (ii) generalized eigenfunction expansion. Both are to-
pics of currently active research, and to prove them we need
relatively advanced machinery. We do not want to go into
detail in this paper concerning these two problems, but pre-
fer to restrict ourselves to giving some definitions and refer-
ences that show that both features are actually fulfilled for a
sufficiently large class of potentials.

We need the unique continuation property in the follow-
ing form.

Definition 2: Let ® lie in the local Sobolev space

. (R™),ie,u®eD(—A)forallueCg (R™). Further-
more, let ® satisfy the following differential inequality for
some A€ R and ¥ the potential:

[AP(x)[<[|(A — V(x))-®(x)] . (2.2)

We say a unique continuation property holds if (2.2) implies
the following: If we assume that ® vanishes around a certain
point x, then it vanishes everywhere (in the sense of LZ.).

Remark: The phenomenon mentioned above has a long
history (see, e.g., the notes in Ref. 3 to the appendix to Chap.
XIIIL.13 or Ref. 4). In recent years, the conditions imposed
on the potential ¥ have been more and more relaxed (see,
e.g., Refs. 5-8 and further references given there).

The next property we shall need is the existence of an
eigenfunction expansion of the Hamiltonian with the gener-
alized eigenfunctions being “sufficiently nice.” Also, here we
do not aim at optimal results, but content ourselves with
showing that something like this actually does exist for a
sufficiently large class of potentials. In order not to struggle
with perhaps nasty measure theoretic problems, we restrict
ourselves to the class of so-called Agmon potentials (a treat-
ment of long-range potentials can, e.g., be found in the book
of Saito®). An approach more in the original spirit of Ikebe
and Povzner can also be found in Ref. 10, see also Ref. 11,
Sec. C 5. So, with V being an Agmon potential (cf., e.g., Ref.
12 for the necessary details) we have the following theorem.

Theorem 1: With V of short-range type in the sense of
Agmon, we have a complete set of generalized continuum
eigenfunctions ¢(-,k), labeled by k€R™, lying in H%_ such
that the following holds: With ®, ¥ e L*(R™), and g a
bounded continuous function,
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N
(¥ g(H)®) = 3 g(4,)(¥]4,)(4,| D)

n=1

+fd'"kg<k2>< V(g (k)

X d(-.k)| D), (2.3)

where N may be infinite, the ¢, are the usual L *-eigenfunc-
tions with eigenvalue A, and { ¢(-,k)|®) is an abbreviation
for § ¢(x,k)- ®(x)-d™x, defined in an appropriate sense,
where the k ? are the continuum eigenvalues.

Proof: For the proof see Ref. 12. Note in particular that
there is no singular continuous spectrum in this case.

Now we are ready to prove the main result of this sec-
tion. We assume throughout the paper that H is bounded
below (which is of course fulfilled for, e.g., Agmon poten-
tials). With U an arbitrary open set in R™ and 7 a fixed but
arbitrarily small time interval about ¢ = 0, we would like to
show that S(U, I) is total in &% = L >(R™). We assume the
contrary, i.e., there exists a nonzero ¥ € L ?(R™) such that

(V,e *#d)=0, forallPeS(U), tel (2.4)

[where S(U) =S(U,t = 0), i.e., the functions exactly local-
ized in U]. Evidently,

(Ve "Hd) =Je“’“d( V.E, d)

has an analytic continuation into the lower half plane, i.e.,

F(t —ir) :=fe—““~"”d( VE, &) (2.5)
is analytic for 7> 0. Defining

Ga+iry: = F (¢ +1ir) , (2.6)
G is analytic in the upper half plane. We have

G()=F(I)=0 (2.7)

by assumption, that is, on an open set of the common real
boundary of G, F. Hence we see that G is the analytic con-
tinuation of F through the real open set /, where the analytic
function F UG is zero. This implies F =0 in the lower half
plane, and by continuity F vanishes also on the real bound-
ary, i.e., we have

( V,e""P)=0, (2.8)

(This simple reasoning, in fact quite common in Wightman
theory, was also exploited in Ref. 13 in order to study the
localization properties in quantum theory.)

By uniqueness of the Fourier transform the measure
d( V.E, P) is zero. Assuming now that H has a generalized
eigenfunction expansion according to Theorem 1 we can
conclude

[ a5, @sc0)(s00, )
ki=A

forallz.

+ z (\I”,¢”)'( ¢n’¢’)=0’ (2-9)

An=A
for a.e. AcR (with respect to the measure [8(4) -dA + 2,
S(A —4,)dA ]Y).
Remark: The above restricted integration over the
sphere k 2 = A is well defined, cf. Ref. 12, Theorem 5.1.
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Abbreviating now ( V¥, #(-,k)) [resp. (¥, 4, )] by
c(k) (resp. c,) we can write this as

U ds, _, k) 6k + 3 ¢, ¢",<1>>=o, ac,
k2=2

A=A
(2.10)

W:U ds,_, (k) 4 + cn¢n) (2.11)
k=4 Fhe=b1

is again a solution of (H —A)u =0, uc Hi.

It is our aim to show that (2.9) implies, in fact, that c,
=0, c(k) = Ofor all n (resp. almost all k). This then would
yield that ¥ = Qin L ?,i.e., that S(U, I) is total. To show this
we need the unique continuation property of Definition 2; u,
of (2.11) fulfills the hypotheses of Definition 2, further-
more,
<u/1 ’ (D) = O,

beSu)=>u;=0 on U. (2.12)

By the unique continuation property this entails that u, =0
ae (in L} ). But the expansion with respect to
{¢(-k), ¢,}is “orthogonal,” that is, u, =0 for almost all 1
implies that {c(k),c,}=0 a.e., hence ¥ =0 in L This
proves the first part of the following theorem.

Theorem 2: Assuming that H has the unique continu-
ation property and a generalized eigenfunction expansion in
the sense of Theorem 1, the following statements hold.

(i) Given an arbitrary open set U C R™ and an arbitrar-
ily small time interval I around ¢ = 0, then S(U,J) is already
total in the full L 2(R™).

(ii) Conversely, if a RS property holds for every open
U C R™, then the generalized eigenfunctions have the
unique continuation property in the sense of Definition 2.

Proof: The proof of (ii) is easy. Assuming that u is a
nontrivial generalized eigenfunction vanishing, e.g., on a
certain open U C R™, we have for all e S(U) and all teR

O0=e *(u,, ®) = (¢u,, ®) = (u,,e~"™Md) . (2.13)

But, by assumption, {e“##} is total in L 2, in particular in
every L%, Q compact in R™. Hence u,; (which liesin L2 _)
vanishesin L2 _.

We would like to mention that the above result is much
stronger than that implied by the well-known feature of non-
relativistic quantum theory, namely, that wave functions
have the tendency to spread out to infinity almost instanta-
neously. The latter says only that the wave function cannot
be orthogonal to certain functions that have their support
concentrated in possibly very small neighborhoods of points
x€R™. Theorem 2 says that even arbitrary extended and os-
cillating functions cannot be orthogonal to S(U, I). The
physics behind the result is perhaps even more striking.
Theorem 2 tells us that the physical content of the theory is
already contained in an arbitrarily small space-time neigh-
borhood of an arbitrary point.

for all

lll. ANOTHER APPROACH AND THE NOTION
OF GENERALIZED PROPAGATION KERNELS

In the rest of the paper we will develop a different ap-
proach to the problem with slightly different results and
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completely different methods, the whole approach being
more in the spirit of the original relativistic context. Stated
somewhat sloppily, it consists of extending time and space
translations together into certain domains of C** """. This
analytical continuation is, however, a little bit subtle since
momentum is not bounded below. It would be tempting to
use a scale of auxiliary spaces (which are possibly no longer
Hilbert spaces) to give meaning to expressions like
{exp i(a + ib) P} ¢, ¢ L *(R™), where P is the momentum
operator. We postpone this approach to the future, however,
and choose another strategy in this paper.

In a first step we want to present n-body Schrédinger
theory in a way slightly different from the conventional ap-
proach, i.e., by means of so-called propagation kernels. It
will turn out that these distributions contain all the physics
of the theory and are amenable to a certain embedding of
ordinary Schrédinger theory into a larger theory, in which
certain spectral and analyticity properties of the objects of
interest can be visualized more easily.

We start from the expression

(pe” M), &, e L*(R"™). 3.1
Evidently this defines a sesquilinear functional over
L2(R*") X L?*(R*") which depends on z. We will restrict
this functional to the dense subset . (R*”). In contrast to,
e.g., L2, 7 is a nuclear space, which has a far-reaching con-
sequence. In this case the kernel or nuclear theorem holds,
which allows us to prove the following theorem.

Theorem 3: With ¢, ¢y € ¥ (R*") there exists a time-
dependent tempered distribution W e’ (R X R*") such
that

(i) ( pei) = f 3(X,)- ¥(¥,)
W(X,,Y,;t)dX, dY,, y
(ii) f W (X,,Y.) 9(¥,)dY,

=y, =e MY in L *-sense, and
(iii) W(X,,Y,:0) =6(X, — Y,) and W(X,,Y,:1)

“solves” the Schridinger equation with respect to X,
= (XpyesX, ).

Proof: Continuity in . implies continuity in L ? such
that ( @, ¢,) is separately continuous in % X % for every
fixed ¢. The simple proof goes as follows:

fi—fin F=sup (14 |X 5| f— f,]*—0, (3.2)

with |[X|: = 27_, |x,| and every keN. Thus we have
Jir=srax =[1r-1p
(14 XD A+ |X|) ~*dX
<sup {(1 + | X ¥ f—£, 1%}

.f(1+|X|)—"dX—>O, (3.3)
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for k large enough and n— 0. So the kernel theorem can be
applied. By varying ¢ over a dense setin L >n %, we see that
(ii) must hold, and (iii) is evident.

Remarks: (1) That the kernel theorem yields nontrivial
information can be seen by the following observation. The
scalar product ( @,¥) is also a sesquilinear, even jointly con-
tinuous, functional over L 2 X L 2. If a kernel theorem would
hold in this situation, the W under discussion would be an
element from L ?(R*" X R*™)! But we already know what W
looks like, namely for ¢, €., W =68(X, — Y,,), which is
notin L ?but in .#".

(ii) The above distribution W has special additional
continuity properties such that we can hope to be able to
restrict the general structure of W further. The structure of
distributions lying in %' is well known (see, e.g., Refs. 14
and 15):

wXx,Y,)=D*X,Y,)m(X,Y,), 34)

with D a certain differential operator of degree a, m(X,,,Y,)
a measure or a function on R™XR"". In the simplest case,
e.g., H,, the free Hamiltonian on L >(R"), the free propaga-
tor has the well-known form

Py(x, y;t) = (4mit) ~*"* exp(ilx — p|?/41) . (3.5)

Other kernel representations are known for, e.g.,
(H — E) ' in the context of eigenfunction expansions and
the Lippmann-Schwinger equation. In the restricted case of
potential scattering we have, for example,

((H=E) 9 = [ 6unb) pndy,  (36)
Ge L 'n L *for a.e. fixed x with respect toy and certain classes
of potentials (see, e.g., Ref. 10, Chap. XI.6). We must, how-
ever, emphasize that the situation in (3.6) is considerably
simpler since one makes heavy use of the fact that certain
operators are Hilbert-Schmidt (which is typical for the case
of resolvents).

(iii) Note that the distribution W of Theorem 3 occurs
also as a path integral in the Feynman-Kac theory.

The observation above motivates the name propagation
kernel or Wightman function of n-particle Schrédinger the-
ory. The W defined in Theorem 3 is of the form

W(X1tseosX by Yiseees Vi ) s (3.7)

i.e., all time coordinates are equal. In the next step.-we want
to make a natural extension to a more general distribution,
depending on ¢,,...,¢,. To this end we will assume (whereas
this is not strictly necessary) that the potential occurring in
the n-particle Hamiltonian is a sum of pair potentials, i.e.,

H=H,+V

=—z —A,; +2V(x

i=1 i<}j
(for simplicity all masses are normalized to 1). This makes V'
translation invariant, more precisely, invariant under over-
all translations. Thinking now of the coordinates as ordered
n-tuples  (x,,..,x;) and correspondingly L *(R"")
=L*R.)®--8L2%(R}), we can define individual time
evolutions in each subspace

(3.8)
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H,: =L*RY), ¥,:=L*R3)eL*R)),.
and
Hl = —£A1 ’

Hy:= —— z A, + Vip(x; — x3),

i=1

3.9)

=——ZA+Z

i=1 icj

For notational simplicity we assume the overall wave
function at time zero, ¢(x,,...,x,), to be given as a product
(the general case is analogous):

O(x,50x)) 1= @, (x, ) -1 (x)) . (3.10)
We can then extend ¢(x,,,...,x;;¢) in the following way: We
let exp — i(¢, — t,)-H, operate on ¢(x,), exp — i(t, —t;)
-H, operate on the product { ¢,(x,)- #,(x;;t, — £,)}, etc.,
that is we get the following definition.

Definition 3: Let ¢(x,,...x;) = @,(x,)e
with ¢,€ L 2(R"). We define ¢(x,1,,....x,¢;) by
¢(xn tn? ’xlt )

r=e "4, (x,)exp( —i(t,_, —t,)H, )]

X[ o1 (x,_y)exp(—i(t,_, —t,_, JH, _,)]

o[l gax) e~ DI, (x,)]] (3.11)

$1(xy)

We have the simple following corollary, which shows that
this actually defines an embedding.
Corollary 1: ¢(x,,,...,x;t) is recovered by setting

t,=t, ==t =t.

This procedure can be extended in an evident manner to
every function of L?(R"") since by the Fubini—Tonelli
theorem, every function of L 2(R*") is an L >-function in,
e.g., {x,,....x;} for almost all coordinates {x,,,....x; , , } be-
ing held fixed.

In a completely analogous way we can extend space
translations.

Definition 4: With ¢ of Definition 3, we define

¢(xn +an;tn’xn—l +an—l; tn—]""’xl +a];tl)

—it,H, ia, P,
= e
.[ ¢n(xn)'exp('—i(tn—l _t )Hn—l)
expli(a, _, —a,)P, _ ) [ Sn_1(x,_)]],

with

= ijr b= _i'axjy

i<k

v
a;eR”.

Remark: Again we see that we get an overall translation
by settinga, =a, _, = --- = a, = a. Note furthermore that
H, and P, commute on 5, and that, in fact, the above-
defined extended space translations shift the individual co-
ordinates {x, } by vectors {a, }.

Employing the above definitions we can make corre-
sponding extensions of the propagation kernels.

Proposition 1: By
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J W(x, + @y3tpssXy + sty Yuseor Y1)
X ¢(yn""’yl)dYn
1= J W(X,,eesXy| Yprees Y1)

X ¢(y.. +an’tn;"'7yl +al’tl)dYn ’ (3‘13)

a generalized propagation kernel is defined, which is again a
distribution in ¥’ depending on the parameters
{t,, ,a,,;...;tl,al}.

Proof: The continuity properties with respect to X,, and
Y, in the #-topology can be shown as in (3.2).

The next natural step is to make a Fourier transforma-
tion with respect to the variables {,4,,...,.,a,} and employ
certain support properties of the Fourier transform Win the
variables {0, k,,...,.0,k,}. While we do not intend to talk
about scattering theory in this paper we would nevertheless
like to make a short aside about the possible use of the above
extension method in this field. The above approach offers the
possibility of dealing with scattering phenomena on a very
broad scale, that is, in quantum field theory, Schrodinger
theory, temperature states, ground states, etc. The particular
advantage is that one need not worry (at least openly) about
reference dynamics, range of interactions, spectral gaps
around the mass shells, etc. This is replaced by a study of the
spectral properties of the I¥’s along certain submanifolds in
the support of W on which, in the limit #— + oo, the “scat-
tering states” will live. For temperature states this has been
done in a recent paper.'® By means of certain geometric ar-
guments we can show when and why scattering states exist
and exactly which properties, in the neighborhood of the
mass shells of ingoing and outgoing clusters, particles in the
spectral support of W yield a nontrivial S-matrix. The whole
approach is more in the spirit of Buchholz’s treatment of
scattering of massless particles and will be developed in a
forthcoming paper.

IV. SUPPORT PROPERTIES OF THE FOURIER

TRANSFORMS OF #(t,a,,,..,t1a:) AND WAt ,.a,,,....11a1)
We will now investigate the support properties of the

Fourier transforms of ¢(t,a,,..t,a,) [resp.

W(t,a,,...t,a;) ] (where we dropped the remaining coordi-
J

d(a,st,,..apt,) = (2m) _z"fexp[ —i(t,w —a,k,) Jexp[ —
e {E(dow, dk,)-$,E "~ V(dw, _, dk

= (27) “Z”Jexp[ —i(t,w, —a, k)] -W(a),,k,,,...,wlkIIX,,,Y,, Yo ( Y, ydY, .

It should be noted that, whereas the various E (dw dk)
occurring in (4.2) are spectral measures, the curly bracket is
a measure only in each of the coordinates (w,;k;) with the
remaining variables (,k;) being integrated over (with ap-
propriate test functions). Taken as a whole, the curly
bracket in (4.2) is a vector valued distribution in the varia-
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SEPD I SRR -E“)(dwl dk,) ¢1}

nates X,,,Y, ) withrespectto (2,.,4,,...,.;a;). This is the same
as investigating the support of the joint energy-momentum
spectrum of (H,,,P,, ) in each subspace 77, [cf. (3.9)].

Proposition 2: Let all V;; be infinitesimally H,,-bounded,
either in operator sense or form sense, or, stightly weaker,
each V™ in %, relatively bounded with all relative
bounds {a@,} smaller than 1. Then the joint
(H,,,P, )-spectrum, a set in R*, can be bounded from below
by the hypersurface (a,, <1)

w=c,(1—a,)k*—b,, (4.1)

withc,,, b,, certain constants and (@,k) the energy-momen-
tum variables corresponding to (H,,,P,,) in the subspace
#,, of the particles (1),...,(m).

Proof: An analogous proof for the more general case of
general nonrelativistic quantum field theory can be found in
Ref. 1, so we give only a sketch of the proof. In the first step
we show that the joint spectrum of H{™:= —} 2", A,
and P, : =37 | p;, can be bounded below by a parabolic
hypersurface (bounding, e.g., 2 p? by ¢|= p;]). In the sec-
ond step we exploit the relative boundness to show that the
interaction results only in a finite overall shift of this parabo-
loid.

Corollary 2: (i) The joint spectrum of (H,,,P,, ) can be
embedded in a domain K,, uT', CR*, where K,, is a ball
around (0,0)eR* with sufficiently large radius and I, the so-
called forward cone {(@,k); o >c-|k |, ¢>0}.

(ii) By choosing the radius of X,, large enough, ¢ also
can be chosen arbitrarily large.

Proof} Each paraboloid of the form (4.1) intersects ev-
ery cone I', for sufficiently large |k |. So there exists always a
finite w,, depending on a,,, b,,, and ¢ such that all (w,k)
lying above the surface (4.1) are ultimately contained in I",
for o> w,.

Now we take a ¢(x, + a,;t,,.-.X; + ay;t,) defined in
Definition 4 and observe that each
exp( — it -y — 8 )H, _ )expli(a,_; —a;)-Pr_y)
standing between the functions ¢, and [ ¢, _,...] actsona
Hilbert space of particle number £ — 1. We know from the
above discussion that the joint (H, _,, P, _,)-spectrum is
contained in some K, _, u', C R*. Inserting the spectral
resolution for each of the above operators, we get

i(tn—l _tn)(‘)n—l - (an~l _an)kn—I]
(4.2)

(4.3)

—
bles (@,k,,....0,k,) with exp[ —i(¢,0, —a, k,)- ] ly-
ing in the domain of definition. By the same token Wis a
distribution with respect to {(w,k;)}. The support proper-
ties of the joint spectrum of { (H, P, )} now entail that the
curly bracket on the right-hand side (rhs) of (4.2) (resp.
W) are distributions with support:
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supp W [resp. supp ¢ C {(@,k,,....0.k,)
such that each (w; k;)eK; Ul }],

that is, we have proved the following theorem.

Theorem 4: ¢(¢,a,,....t;a,) is the Fourier transform
[ with respect to (7,4,,...1,a,) ] of a vector valued distribu-
tion ¢, given as the curly bracket in (4.2), with
(w;,k;)-support contained in K, UT'.. The same support
properties hold for W the Fourier transform of the general-
ized propagation kernel.

(4.4)

V. THE ANALYTIC CONTINUATION OF ¢ (f,a,,,...,f134)
AND W(t,,a,,,...,t1a1)

_ We will now exploit the special support properties of ¢,
W to show that ¢, W can be analytically continued into a
domain of C*+ V", We have seen that the support of ¢, Wis
restricted by (@, k;) € K, uI'.. We observe now that the rhs
of, e.g., (4.2) still exists if the exponents
(t,w, —a,k,),

((tn~ 1 — by )'wn—— 1

are replaced by

)1 S

_(an—l —a,

(2,0, —6nky)
((Zoo1—2)0, = (51 — &)k )seees
(5.1)
with
z,:=t,—ir,, §,:=a, —ib,,.., (5.2)
where (7,,b,),..., fulfill the support condition
(r,0, —b, k,)>0,
((rp_y — 7)o,y —(b,_y — b))k, _)>0,...,
(5.3)

for (w,,k,)el’,, (@, _,k,_,)El,....

This can be seen as follows. We can split the support of
W with respect to each (w,,k;) into the sets K,UI' .\ I'; and
.. Since K, has a finite diameter the analytic continuation
of

f (-)dw; dk, with respect to (z;,&;) (5.4)
Kul N T

always exists. To continue the integral over I',, fr_ () do,
X dk;, we need the special support properties of the (7, &;)
mentioned in (5.3). These properties guarantee that

exp| —b,k,)],
exp[ — (7.,

- (ann
—Tn)wn—l - (bnvl —bn)kn—l)]"“
(5.5)

are globally bounded on the domain, I",, of integration.
This observation allows us to prove the following
theorem.
Theorem 5: ¢(¢,a,,...t,a,), W(t,a,,....t,a,), defined in
Sec. III can be analytically continued into the domain 7"
CCY+ P given by

(zn’ ;n)’ ((zn—l _zn)’(gn—l ——é‘n))’
eR* ! 4+ i{(7,b); beR", 7>0}: =T,

withz, =¢,

(5.6)

—ir,,§,=a, —ib,,....
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Proof: The set of pairs (7,,b, ),... givenby (5.3) span the
interior of the so-called dual cone F of I'.. We showed in
Sec. IV that the (w,,k; )-support of ¢ W is bounded below by
a paraboloid that intersects eventually every cone I, for ar-
bitrarily large ¢. This implies that ¢, W can be analytically
continued into R * " 4 i T in each of the variables given
in (5.2) for c-> . For c— 0, F becomes the whole half
space (beR”, 7> 0).

It is perhaps instructive to apply the above machinery to
the simplest example we can think of, the free time evolution

in R®. In this case we have (H,: = — A)
(e—itH(,¢)(a) = (217_)—3/2.fe_irpz.e;pa$(p)d3p . (57)

The energy spectrum is supported on the hypersurface
w = p? thatis,

W(w,k) =60 — p?), (5.8)
and we see that
(217.)-—3/2fe—i(l—ir)pz.ei(a—ib)p$(p)d3p (5.9)

exists provided that 7> 0 and is analytic in the domain
{z,8); z=t—ir, {=a—ib, >0} (5.10)

(since p* wins out against | p| for | p|— o ). The generalized
propagation kernel is
W(a — ib, yit — ir): = (dmi(t — iT)) 73

ib)*/4(t — i),

(5.11)

-exp(i-(a —y —

and we see again that

j W(a — ib, y,t — it)$( y)dy

is complex differentiable with respect to {(a —ib),
(¢t — ir)}in L ? as long as 7 > 0 since this provides us with a
term ~exp( — |a — y*|/47).

VI. ANOTHER VERSION OF THE REEH-SCHLIEDER
THEOREM

We now prove another version of the RS theorem,
which is more in the spirit of the original version proved in
Wightman theory.

Theorem 6: With a Hamiltonian H and generalized
states @(z, a,,....t,a,) as given in Sec. III, the following
holds: The set

S (U, D):={d(x,t,,..%1t,) ,
supp $(x,,...x;) C U, C R}

is already total in #°, = L 2(R*"), where U, is an arbitrar-
ily small open set in R*”* and I is an arbitrarily small time
interval around ¢ = 0.

Remark: 1t is already sufficient to choose the wave func-
tions of the form

¢(xn""’xl) = ¢n (xn )' e ¢l('x1) .

Proof: We assume the contrary, i.e., there exists a wave
function ¥(x,,,...,x,) such that

(,¢) =0, forallgeS'(U,,I).
We proved in Sec. V that the function

tel,

(6.1)
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F(t,a,,..ta,) : = (¥, ¢(t,a,,...1,a,)) (6.2)
can be analytically continued, with respect to {(#;4,)}, into
an open domain T" of C**+ V" and that F(z,a,,...ta,)
[resp. F(a,,...,a,)] are the boundary values for {(Imz,,
Im £;)}—0.

Choosing the ¢’s to have their supports in a subset U},
C U, such that for {g, } sufficiently small their space trans-
lates, ¢(a,,,...,a,) have their support still contained in U, , we
see that we can arrange matters such that

F(a,t,,....a;,t;)=0,
for an open set & of

{(tia)} C RO+ D7, (6.3)

This set & is part of the boundary of the analytic continu-
ation of Finto T ". Proceeding as in Sec. II, we define

Gz, §nrt1 §1) i = F(Z,600Bil) s (6.4)
where G is now analyticin 7" and T", T" having a com-
mon real boundary set &, where

F=G=0
holds.

Again we conclude that F=0in 7" (by using the “edge
of the wedge” theorem, see Ref. 2) which, by continuity,
holds also for the real boundary, i.e.,

F(,a,,...t,a,)=0

(6.5)

(6.6)

on R * " Now we can set all time coordinates {¢,} equal
to zero and vary the a,’s independently in R yielding

. J.'Z(xnr--)xl) InI ¢i (xi +ai )anEO ?

i=1

for all {a,}. The ¢,’s can be chosen to be arbitrary functions

(6.7)
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as long as II7_, ¢, has its support contained in U, C U,.
This, together with (6.7), implies that y =0 in L? (R*™),
which proves the theorem.
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In this paper a particular class of anisotropic cosmologies, the Kantowski—-Sachs models, is
considered. It is assumed that the matter content of the models consists of a noninteracting
mixture of ordinary matter (“dust”) and thermal radiation. A qualitative study by means of a
three-dimensional autonomous system is carried out, giving us the global behavior of the “dust”
density, the radiation density, and the shear anisotropy during the models’ evolution. All the
models have past and future cosmological singularities where both the dust density and the
radiation density diverge. A particular interesting result is a set of solutions of three-measure zero,
which is radiation dominated at one (past) singularity (of the “point” type) and evolving to a
(future) singularity, where ordinary matter and thermal radiation become negligible.

I. INTRODUCTION

For a long time cosmologists have used the most simple
solutions of Einstein’s general relativity as applied to cos-
mology and have developed the so-called “standard mod-
el.”! In spite of that, they have obtained remarkable results
for the prediction of the present cosmic helium abundance,
calculated on the assumption that our universe was very hot
in the past, which in turn is based on the most prominent
relic of this hot past, namely the 2.7 °K microwave back-
ground radiation.? This period is known as the “radiation
dominated universe” when the pressure p, of the thermal
radiation was one third of its energy density p, . Later, after
one million years from the “big bang” onwards, matter and
radiation decoupled and our universe became matter domi-
nated: We still live in this universe where the matter density
largely exceeds that of cosmic radiation.

The standard model is based on a very strong assump-
tion: our universe is spatially homogeneous in general and
isotropic around us. Although this is true on large scales
nowadays, there is no reason to maintain this “cosmological
principle”? for the very early history of our universe. For
almost 20 years cosmologists have studied under the very
effective stimulus of Misner’s “chaotic cosmology,”* spatial-
ly homogeneous but anisotropic cosmologies belonging to
the Bianchi class.>® Part of this work was done by using
qualitative techniques of plane autonomous systems,”" be-
cause the Einstein field equations can be transformed quite
easily into such a system when the above symmetries are
assumed. An exceptional case to the Bianchi cosmologies
was discovered by Kantowski and Sachs.’® The resulting
Kantowski-Sachs (KS) cosmologies have been analyzed ex-
tensively by Collins'® using such global qualitative tech-
niques and assuming a perfect fluid as matter content but for
a vanishing cosmological term A. We have generalized'*'
this work by allowing A to be nonzero, which leads us to
consider this time a three-dimensional autonomous system.
Interesting results emerged like the isotropy of some of these
models when A > 0 and the cosmic time tends to infinity.

*® Present address.
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In this paper we suppose A to be zero but assume a much
richer matter content for the KS models studied herein, i.e.,
a noninteracting mixture of ordinary matter (“dust”) and
thermal radiation. We also obtain in this case a three-dimen-
sional autonomous system, but one for which the variables
are now dust density p,, the radiation density p,, and the
shear anisotropy o. One interesting result is the existence of
cosmological models of three-measure zero, which are radi-
ation dominated at the beginning of their evolution and
evolve to a singularity where matter and radiation are insig-
nificant.

Our paper is organized as follows: In Sec. II we derive
the three-dimensional system for the KS metric with the as-
sumed content of our fluid and study this system by global
qualitative techniques in Sec. II1. The conclusion is drawn in
Sec. IV,

Il. QUALITATIVE ANALYSIS

We consider the KS metric®!®

ds® = dt* — exp( —2Q)

x{e?#dr* + e~P(d? +sin* 8 dp*)}

in the coordinates (7,7,6,¢), where ¢ is the cosmic time coor-
dinate, r a radial coordinate, and 6,4 the usual spherical co-
ordinates, and ) = Q(r) and B8 = B(t) are two unknown
functions of ¢. As the fluid we will take, as mentioned above,
a noninteracting mixture of dust and radiation, which means
that the total energy density g, =p4 + p, and the pres-
sure p,... =p, = p,/3. Changing notations, we shall write
p =pu+ € p=¢€/3. Einstein’s field equations with a non-
zero A can be written as follows:

30238 A+ P =yt ¢ (2.1)
6Q+38—90>—908 382 +3A -3 =g,

(2.2)
680 — 38— +308 -3 +3A=¢ (2.3)

In the following we will use () as a time variable and a
prime will denote differentation with respect to £2. The mean

expansion rate 8 = — 30} and the shear o = (3/2) ﬁ en-

able us to define 8’ = — 23 0/6 measuring the dynam@c
importance of shear. We introduce the quantities x; = u/Q?
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and x, = /2%, measuring, respectively, the dynamic impor-
tance of dust and radiation. Finally we will make use of a
fourth quantity z = 3x,/u = 3x,/e = Q™2

These definitions allow us to reexpress the field equa-
tions (2.1)—-(2.3) together with the two conservation equa-
tions

€ = 4e, (2.5)

in the form of a four-dimensional autonomous system and a
constraint equation with four dependent variables x,, 8',x,,z
and with Q as the independent variable.

Equation (2.1) becomes

B — 4+ §Az + 8x, + 4x, = (4/30%)exp(2Q + B).
(2.6)
By eliminating € from (2.2) and (2.3) and substituting the
expression of the right-hand term exp(2€ + S) obtained
from (2.6) we shall have

B" =3B'{4-B"+ (2A/3) z — x, — 2x,}

—~ {4 —-B7— (4A/3)z —4x, — 4x,}.  (2.7)

We obtain

600 — 90? — 3B + 3A =€ + exp(2Q + B) (2.8)
when we eliminate B in (2.2) and (2.3).

By using (2.4) and (2.6) we get

x; =x,{1 =B+ (2A/3)z — x; — 2x,}. (2.9)
Analogously we get

x, =x,{2 — 87+ (2A/3)z — x; — 2x,}. (2.10)
Differentiation of z with respect to € yields

2= —=22{14+8"%"2-Az/3 +x,/2+x,}. (2.11)

Equations (2.7) and (2.9)-(2.11) form a four-dimen-
sional autonomous system of ordinary differential equa-
tions. No attempt has been made as yet to solve such a sys-
tem globally by qualitative methods.

Unfortunately there do not exist theorems to describe
the topological behavior around singular points in this
(four-dimensional) case, as we have done for a three-dimen-
sional system in a previous paper'® (hereafter referred to as
Paper I). The qualitative behavior of the solutions would be
drawn in the (x,, 8'x,,z) phase space and the region of
physical interest would be given by (x,>0, x,>0, z>0,
B> — 4+ (4A/3)z + 4x, + 4x,> 0). Let us point out that
there is a one-to-one correspondence between the solutions
of the original system (2.1)~(2.5) and the transformed one
(2.6), (2.7), and (2.9)—(2.11), but that the advantage of
transforming the original system lies clearly in the fact that
as a result we get an autonomous system. In the following we
shall limit ourselves to particular three-dimensional cases.

When we set x, =0in (2.7) and (2.9)-(2.11) we ob-
tain a three-dimensional autonomous system in the variables
(x,, B',2):itis the particular case ¥ = 1 of the system studied
in Paper 1.

Similarly by setting x, = 0 we obtain another three-di-
mensional system that corresponds to the particular case
y =4%in Paper L.

1579 J. Math. Phys., Vol. 27, No. 6, June 1986

FIG. 1. The region of physical interest for the three-dimensional autono-
mous system as well as the singular points at finite distance are shown in the
case of the KS models. Striped parts are outside the region of physical inter-
est.

When the cosmological term vanishes we get a new
three-dimensional autonomous system

B” =34B'(4—B"~ x,—2x,)

14— B — 4x, — 4xy), (2.12)
x; =x,(1—B"%—x, —2x,), 2.13)
X, =%,(2—B"% —x, — 2x,). (2.14)

It describes the KS models in the presence of a noninteract-
ing mixture of dust and radiation. It is a combination into a
three-dimensional system of two particular cases (¥ = 1 and
¥ =14) of a plane autonomous system studied by Collins'?
(hereafter referred to as Paper II). The region of physical
interest is given by (x,>0,x,>0,8'> — 4 + 4x, + 4x,>0)
and the singular points at finite distance are (x, =0,
B'=+2,x=0),(x,=08=0,x,=1),and (x;, =1,
B’'=0,x,=0) (see Fig. 1).

Let us remark that the system (2.12)~(2.14) describes
also the orthogonal Bianchi models of type III, with the
same content of matter and radiation and a vanishing cos-
mological term. The only difference with the KS case lies in
the region of physical interest, which is now given by (x, >0,
x,=0,8"2 — 4 4 4x, + 4x, <0). Wehave in addition to the
singular points given above the point (x, =0, 8’ =1,
x, =0). The two plane systems obtained for x, =0 and
x, = 0 have been studied by Collins'® for the two cases y = 1
and y =4

lil. GLOBAL QUALITATIVE STUDY

In order to study qualitatively the three-dimensional
system in the KS case we examine first the behavior of inte-
gral curves in the neighborhood of the critical points at finite
distance as well as the infinity. We do this by applying the
theorems indicated in the Appendix of Paper I. By analyzing
the three surfacesdx,/dQ = 0,dB'/dQl = 0,dx,/d} = Owe
obtain then a global picture of the orbits.

All the critical points at finite distance are simple. The
point (0,2,0) is a stable node with negative characteristic
roots;: A = — 3,4 = —2,v= — 2. The orbits starting at a
sphere centered at (0,2,0) tend to this point for Q— . The
characteristic vector ¢, = (1, — 1,0) corresponds to the A
root; we have an infinity of characteristic vectors in the plane
( B'x,) [Fig. 2(a)]. There is a double infinity of physically
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X

(a) (b)

FIG. 2. The region of physical interest that is outside the striped parts in the
neighborhoods of the two points (0, + 2,0) and (0, —2,0) is depicted.
e1,¢p0¢3 are the three characteristic vectors.

interesting orbits starting at the sphere and tending to
(0,2,0) along the plane ( B’,x,); thereis only one orbit along
the vector ¢, givenby 8'* — 4 + 4x, =0.

The point (0, — 2,0) is also a stable node whose roots
are A = — 3, u = — 6, v= — 2. The corresponding char-
acteristic vectors are ¢; = (1,1,0), ¢, =(0,1,0), and
e = (0,1,1), respectively [Fig. 2(b)]. A double infinity of
orbits tends to (0, — 2,0) alongside the vector ;. Thereis a
simple infinity of orbits tending to (0, — 2,0) alongside e;
these orbits correspond to those tending to (x =0,
B’ = —2) in the particular plane case y = 1 studied in Pa-
per IL

The singular point (0,0,1) is an (unstable) saddle point
withA = — 1,4 = 1,and v = — 2, and corresponding vec-
tors ¢; = (1,0, — 1), ¢, = (0,1,0), and ¢; = (0, — 1,3). We
find a simple infinity of orbits tending to (0,0,1) along ¢,,
with Q— 0. There is only one orbit along ¢, given by
B'? — 4 4+ 4x, = 0, and only one along 3, corresponding to
the one tending to (x = 1, 8' = 0) in the plane case ¥y =4
(Paper II).

In the plane (x,, 8') we have the singular point (1,0,0),
which is a saddle point withA = — 1,z =3, and v = 1. The
corresponding vectors are ¢; = (1, — $,0), ¢, = (0,1,0), and
e3 = (— 1,0,1). There is only one orbit along ¢, (as for the
plane case ¥ = 1 in Paper II), only one along ¢, given by the
equation > — 4 + 4x, = 0, and a simple infinity along the
Vector , given by the equation 8'* — 4 + 4x, + 4x, =0.

The Poincaré transformations'®'*x, =s~, 8’ = us~!,
and x, = vs ! enable us to study the critical points at infinity

ar

FIG. 3. The singular points at infinity obtained by the Poincaré transforma-
tionsx, =s~',8' = us™ ', x, = vs™'are (s = 0,u = 0,v>0). Thedirections
of approach in the plane (s = 0) are depicted by the parallel lines. The line
in the plane (u,s) with ¢ = arctan § shows a particular direction of ap-
proach not in the plane (s = 0).
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that are not in the plane ( °,x,): these are the double singu-
lar points (s =0, ¥ = 0, v>0) (Fig. 3). The general expres-
sion of the directions of approach (see the Appendix in Pa-
per I), not in the plane (s = 0), of the singular points (s = 0,
u =0, v=1y,) is given by

{0} = [ 1 1 Vo ]
o} = , , )

2(1+205)  (3+v)(1+205)  2(1 + 20p)°
One should notice that tan ¢ = w,/w, reduces to } when
o = 0 and § when vy— o, which agrees with the results of
the two plane cases when ¥ = 1 and y = { in Paper II.

By studying the three surfaces dx,/dQ =0, dB'/
dQ =0, dx,/dQ} = 0, we obtain a global picture of the or-
bits. We have a double infinity of orbits starting at (0,2,0)
and tending to (0, — 2,0), becoming tangent to the singular
line at infinity with tan ¢ = 0. There is a time-symmetric
surface of orbits starting at (0,2,0) and approaching the sin-
gular points at infinity with ¥ = arctan o,/w,. We have
further a double infinity or orbits starting at (0,2,0) extend-
ing to infinity with ¥ = 7 and coming back to the same sin-
gular point. There is finally a simple infinity of orbits starting
at (0,0,1) extending to infinity with ¢ = 7 and tending to
(0,2,0). The time reverses of all these models are also feasi-

ble.
The general features of the singularities are as follows.

There is one “cigar” singularity (X o, Y— 0) represented
by the point (0,2,0), and one “pancake’ singularity (X— 0,
Y—const, where const is a positive constant) represented by
the point (0, — 2,0). The singular point (0,0,1) is a “point”
singularity (X— 0, Y— 0). The Raychaudhuri equation

6+06%/3 420"+ (p+2) =0

tells us that the dust density u is insignificant at all these
singularities, and that the radiation density € is dominant
only around the singular point (0,0,1). The expansion rate
is dominant at all three points whereas the fluid shear o is
only important around the points (0, 4 2,0). All these sin-
gularities are of a cosmological nature, i.e., it takes a finite
cosmic time ¢ to get there (}—c0: #— 0. ). The two varia-
bles i and € diverge at all the singularities. There are particle
and event horizons in the sense defined by Rindler®® in all
directions except in the d /dr direction around the singularity
(0, — 2,0) for which these horizons are removed. We have
summarized all the information about the asymptotic behav-
ior of the models around the singularities in Table I.

IV. CONCLUSION

We have carried out a detailed analysis of KS models
containing a noninteracting mixture of ordinary matter and
thermal radiation. Let us be reminded that a very interesting
set of solutions was found: models that are radiation domi-
nated at the past singularity and evolving to another future
singularity where matter and radiation are insignificant. The
two singularities are of a cosmological nature and according-
ly the average length scale / vanishes there. The past singu-
larity is of the point type and the future one is a cigar singu-
larity. Particle and event horizons exist around these
singularities in all directions.

Although the KS cosmologies are of a very special kind,
the qualitative study by means of a three-dimensional auton-
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TABLEL. In this table the different singularity types are indicated as well as the asymptotic behaviors on the physically relevant variables: the average length scale /, the length scales X and Y, the dust density g, the
radiation density ¢, the fluid expansion 8, the fluid shear g, and the integrated shear 8. The notation const stands for a nonzero finite limit. The upper sign corresponds to a past singularity and the lower one to a future

singularity.
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omous system of these models gives us an important tool to
investigate more “realistic”” models in comparison with the
real universe in its entire evolution, invoking eventually
quantum processes, and gives hope for other interesting re-
sults when applied to the Bianchi class of cosmologies.
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It is shown that in a vacuum space-time, possibly with a nonzero cosmological constant, which
admits a D(1,0) Killing spinor, one component of the perturbed Weyl spinor that satisfies a
decoupled equation, when multiplied by an appropriate factor made out of the components of the
Killing spinor, constitutes a Debye potential that generates metric perturbations of the considered
background. It is also shown that in the case where the background is of type N, there is an
operation that relates the gravitational perturbations and the zero-rest-mass fields of spin-0, -4,

and -1.

I. INTRODUCTION

In a recent paper’ it was shown that the existence of a
D(1,0) Killing spinor L, in an otherwise arbitrary space-
time, implies that one can construct a solution of the spin-}
and spin-1 zero-rest-mass field equations from a given solu-
tion of the corresponding field equations. Moreover, the new
solution constructed in this way can be given in terms of a
single component of the old one, obtained by the full con-
traction of the spinorial components of the field with a prin-
cipal spinor of L ;. In the case of the electromagnetic per-
turbations of a vacuum type D space-time, the fact that one
component of the electromagnetic field can be used to gener-
ate another full solution was previously noted by Wald.?

Even though there is no known geometric interpretation
for a D(1,0) Killing spinor, it seems that the existence of
such a spinor field is associated with the separability of the
spin-} and spin-1 zero-rest-mass field equations (see, e.g.,
Refs. 3 and 4).

The aim of this paper is to show that in the case of a
vacuum space-time (with or without cosmological term),
the existence of a D(1,0) Killing spinor permits the con-
struction of a full metric perturbation of the background
space-time from a single component of the perturbed Weyl
spinor, which satisfies a decoupled equation. In the specific
case of the Kerr metric, which admits a D(1,0) Killing
spinor, this fact implies that one can obtain full metric per-
turbations from the separated Teukolsky functions (cf. Refs.
5 and 6).

Most investigations on Killing spinors have been re-
stricted to the case of algebraically general Killing spinors of
valence 2; and therefore to type D or conformally flat space-
times (see, e.g., Refs. 4, 7, and 8). In the present paper the
two possible algebraic types of the Killing spinors of valence
2 are considered. Some results previously known valid in the
case of type D vacuum space-times, derived by other means,
are included; pointing out, however, their origin in the exis-
tence of a Killing spinor.

In Sec. II a brief description of the Debye potentials for
gravitational perturbations of algebraically special space-

|

times is given. In Sec. III we show how a D(1,0) Killing
spinor relates the component of the perturbed Weyl spinor
along a repeated principal null direction with the gravita-
tional Debye potentials. In the case where the unperturbed
Weyl spinor is of type N, we show that there is a connection
between the gravitational perturbations and the zero-rest-
mass fields of spin-0, -4, and -1.

Il. GRAVITATIONAL DEBYE POTENTIALS

As was originally conjectured by Chrzanowski,’ the so-
lutions of a certain linear second-order differential equation
for a scalar potential lead, by differentiation, to metric per-
turbations of a given arbitrary algebraically special vacuum
space-time. Independent proofs of the validity of this conjec-
ture have been given by Kegeles and Cohen,® through a very
lengthy computation, and by Wald,> who, based on a more
general result, devised a very simple derivation of the expres-
sions proposed by Chrzanowski.*°

Wald’s derivation depends on the fact that the linear-
ized Einstein operator is self-adjoint and that, for an alge-
braically special vacuum space-time, there is a decoupled
equation for a component of the perturbed Weyl spinor. In a
spinor frame such that the components of the unperturbed
Weyl spinor satisfy ¥, = ¥, = 0, the component ¥, of the
perturbed Weyl spinor obeys the decoupled equation'’

[(D—4p—3€—p*+€*)(A—4y+pu)
—(b—-4r—-3B—a*+7*)(6*—4da+ )
—3W,]¥, =0. (1)

Solutions to the adjoint equation of (1),

[(A+3y+u*—y*)(D+4e+3p)

—(6*+3a+B*—1)(6+48+37)
—3W,]y =0, (2)

generate metric perturbations of the given background
space-time according to

by = —{LIE+a*+3B—7)(6+4B+37) —A*(D+4e+3p)] + m,m, (D — €* + 3e — p) (D + 4¢ + 3p)
—lum, [((D+e*+3e+p*—p)(6+48+3r)+(6—a*+38—7*—71)(D +4e+3p)1}¥ +cc, (3)
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where /, and m,, are Newman—Penrose tetrad vectors.”>*'°

Teukolsky’s equation (1), which follows from the Bian-
chi identities, also applies when there exists a nonzero cos-
mological constant and, therefore, Eqs. (1)-(3) are valid
for all algebraically special vacuum space-times with cosmo-
logical constant.

lil. GENERATION OF PERTURBATIONS

A D(1,0) Killing spinor’ is a symmetric spinor field
L ,5 that satisfies

V(A RLBC) =0 4

(4,B,C,.=12 R,...=1,2). If the space-time is not con-
formally flat, then the existence of a nontrivial solution of
(4) implies that the conformal curvature is of type D or N,
i.e., the space-time is algebraically special, and the solution
of (4) is unique modulo a constant factor.'?

In the forthcoming we will assume that the space-time
admits a D(1,0) Killing spinor and that the traceless part of
the Ricci tensor vanishes (®; = 0, in the Newman—Penrose
notation), i.e., the Einstein vacuum field equations, possibly
with a nonzero cosmological constant, are satisfied. Then

KAR = VBRLAB (5)

is a (complex) Killing vector field.®

It will be shown that the decoupled components of the
perturbed Weyl spinor and the gravitational Debye poten-
tials are related through the components of the Killing
spinor L ,5. In the case where the conformal curvature is of
type D, this relation has been previously given.” However,
for the sake of completeness, we shall also treat this case
briefly.

A.Type D

When the conformal curvature is of type D then, in a
frame such that ¥, = ¥, = ¥; = ¥, = 0, the only nonvan-
ishing components of L,, L,,=L,, are given by
L,, = const(¥,) ~ /3 (see Ref. 7). Due to the existence of
two repeated principal null directions of the conformal cur-
vature, the components ¥, and ¥, of the perturbed Weyl
spinor satisfy decoupled equations; ¥, satisfies Eq. (1) and
W, obeys!!

[(A+4u+3y+pu*—y*)(D+4e—p)
—(6*+4r+3a+B*—T)(5+48— 1)
—39,]¥,=0. (6)

By using Eq. (4), it is easy to see that if W, is a solution of
(6), then

¢= (L12)4\P4 (N
is a solution of (2), and conversely. This result, with L,,
expressed in terms of W,, was previously given by Wald?;
without realizing, however, the role played by the existing
Killing spinor.

In a similar manner, if ‘i’o is a solution of (1), then
¥ = (L,,)*¥, is a solution of the adjoint equation of (6),
and conversely. The gravitational Debye potential ¥’ also
yields metric perturbations of the background space-time by
an expression analogous to (3).
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B. Type N

When the conformal curvature is of type N, then, in a
frame such that ¥, = ¥, = ¥, = ¥, =0, the only nonvan-
ishing component of L 45, L,, is determined by

DInL,= —-2(p+e¢€), 6Inl,,= —2(7+B),
*InL,,= —2a, AlnL,,= —2y. (8)

A straightforward but somewhat lengthy computation, us-
ing Eqs. (8) and the qommutation relations for the tetrad
vectors, shows that if ¥, satisfies Eq. (1), then

Y= (L22)4\1’o (9)

satisfies Eq. (2), and conversely. In the present case, in con-
trast with the type D case, conditions ®; = 0 do not imply
the existence of a Killing spinor L . In fact, there are type N
vacuum space-times where Eqgs. (8) are not integrable.

By using Egs. (8), one finds that the Killing vector (5)
is given by

K =L,,(D — pé),
modulo a constant factor.

When the conformal curvature is of type N, the solution
L5, of Eq. (4) must be algebraically special and it can be
written as L,z =L, Ly, where L, is a D(},0) Killing
spinor,'?i.e., L, satisfies

VuRLg =0. (11)

In fact, Eq. (11) is integrable only if the conformal curva-
ture is of type NV or equal to zero.

If ¢,4p is a solution of the source-free Maxwell equa-
tions, V4%¢ ., = 0, then, by virtue of (11), ¢, = ¢ 5 L sat-
isfies the Weyl neutrino equation V4%¢, = 0 (cf. Ref. 13).
Likewise, y = ¢, L* satisfies the massless field equation for
spin-0

(V¥V, +R/6)y =0, (12)

where R denotes the scalar curvature, provided that ¢,
obeys the Weyl neutrino equation. Similarly, from the Bian-
chi identities for a vacuum (those that do not involve W¥,),
with¥, =¥, =¥, =¥, =0and x = o0 =0, it follows that

(6* —da+ MV, — (D —4p —2e)¥, =0,

(A—4y+p)¥,— (5 — 47— 28)¥, =0,

(8* —2a +2m)¥, — (D — 3p)¥, = AV,

(A =2y +2u)¥, — (6 —3n)V, = v,
then, using Eqgs. (8), one finds that ¢OEL22\P0, é,=L,,¥,,
and ¢,=L,,¥, satisfy Maxwell’s equations; i.e., even though
the perturbed Weyl spinor does not satisfy the equation
VARY oo =0 when W, #0, ¢, =V ,5cp L° does satisfy
Maxwell’s equations (cf. Ref. 4), and therefore,

$q = ¢ABLB = \PABCDLBLCLD
is a solution of the Weyl neutrino equation and
¥ = YypepL “L BL °L ® satisfies Eq. (12).

Since the existence of a Killing spinor L ,5 establishes a
connection between the Debye potentials and the field com-
ponents in the cases of the gravitational perturbations of
vacuum space-times and of the spin-{ and spin-1 zero-rest-

mass fields,' one could also expect some relationship
between the Debye potentials or these fields. Indeed, by us-

(10)

(13)

G. F. Torres del Castillo 1584



ing Egs. (8), it is clear that if 7y is a Debye potential for the
Weyl neutrino field,>'* i.e.,
[(A+p*—7y*)(D+e)

—(8*+B*—m)(6+B8) )Yy =0, (14)
then ¥z = Ly = (L,,)"*¢y is a Debye potential for the
Mazxwell field,

[((A+y+pu*—v*)(D+2+p)

—(*+a+B*—-m™)(6+28+7)]Yg =0, (15)

and conversely. As is shown in Refs. 14 and 15, under the
present assumptions (®; = 0 and algebraic degeneracy of
the Weyl spinor), the most general solution of Weyl’s neu-
trino equation or Maxwell’s equations is given locally in
terms of a scalar potential that satisfies Eq. (14) or (15),
respectively. The field components are given by

bi =0 "V (gthyl®)

and

(16)

¢AB = VC(A7¢—2VDB) [¢2'/’EICID]’ 1
where /, is the repeated principal direction of the Weyl
spinor and ¢ is a function such that

IBVAclB=1AlBaBC 1n¢ (18)

(i.e,p=DlIn¢, 7 =46 In ¢). Inasimilar way, one finds that
the Debye potentials ¢y and i are related with the solu-
tions of Eqs. (2) and (12) by

Y= (Lz)z'//E = (L2)3¢N = (Lz)“,l’-
Computation of the components of the Maxwell field

generated by the Debye potential 3, = L,y according to
(17), using that L, = L,l,, yields

¢AB = VC(A ¢_2VDB) [¢2¢NLCID]
=V U7 'LV (d¥nIn) + ¥nlp VP25 L
+ ¥nlpLe 3% In 8],

then, using Eq. (16) and
IpVPsLe = — 1,V L2 =LPVpl, =L IP3p; Ing
[see Eq. (18)], one obtains

baz =Vl s =L Veuds — 04V Le,  (19)
where ¢, are the components of the Weyl neutrino field

generated by 1. Similarly, the Weyl neutrino field generat-
edby ¢y = L,y, where yisasolution of Eq. (12),is given by

$4=0""Vay(xL®)
=L%8x+xL%3sIn¢+xVp,L>
Then, using the fact that V2, L, = 2L # 3,, In ¢ [which can

be deduced from (18) and V4R¢°L,L, =0 (see Ref. 1)],
one gets

$a =L%dpux —WV°iL;. (20)

1585 J. Math. Phys,, Vol. 27, No. 6, June 1986

Since the most general solution ¢,; of the Maxwell
equation is given locally by Eq. (17) in terms of the solution
¥ of Eq. (15), ¢,; is given also by Eq. (19) in terms of the
Weyl neutrino field generated by ¢y = ¥z/L,. Similarly, it
follows that the most general solution of Weyl’s neutrino
equation is given, locally, by Eq. (20) in terms of the solu-
tions of Eq. (12). Expressions (19) and (20) together with
the relations ¢, = ¢é,,L? and y=¢,L* coincide with
those found in the case of flat space-time, which lead to the
interpretation of a twistor as a helicity-raising operator for
massless fields [see Ref. 13, Eqgs. (4.38) and (4.37)]. [It
may be remarked that Egs. (19) and (20) apply without any
explicit restriction on the Ricci tensor, provided that L,
satisfies Eq. (11).]

IV. CONCLUDING REMARKS

We have shown that, in a background space-time that
admits a D(1,0) Killing spinor, an appropriate component
of a Weyl spinor perturbation generates a full metric pertur-
bation such that the corresponding perturbed Weyl spinor is,
in general, different from the starting one. It seems reasona-
ble to conjecture that the existence of a D(1,0) Killing spinor
is associated with the separability of the decoupled equations
for the Weyl spinor perturbations. In fact, Dudiey and Fin-
ley'® have shown that for all the type D vacuum space-times,
which admit a D(1,0) Killing spinor, the equations for the
radiative components of the gravitational perturbations are
separable.
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By using the approach to the Einstein field equations based on the existence of a congruence of
null two-dimensional surfaces, it is shown that a scalar potential that satisfies a second-order
linear partial differential equation generates gravitational perturbations of a given algebraically
special solution of the Einstein vacuum field equations with cosmological constant.
Generalizations of this result to the case of simultaneous perturbations of the gravitational and

the matter fields are also indicated.

|. INTRODUCTION

A gravitational perturbation of a solution of the Ein-
stein vacuum field equations, g, is a *“small variation,”
8g = h,, dx* ®dx", of the metric such that g + g is also a
solution of the Einstein equations to first order in §g. The
components 4, are thus restricted by a set of ten coupled
second-order linear partial differential equations.

Various methods have been applied to find the gravita-
tional perturbations for some specific curved background
metrics. In particular, the perturbations of the Kerr metric
have been studied in detail, leading to the discovery of some
interesting physical effects and some remarkable mathemat-
ical properties of the solutions. (See, e.g., Ref. 1.) The com-
plete gravitational perturbations, in the case of the Kerr met-
ric, were obtained by Chandrasekhar® by solving the
linearized equations and by Chrzanowski,> who, by postu-
lating a certain factorized form for the Green’s function of
the gravitational perturbations, obtained the result that the
metric perturbations can be expressed in terms of second
derivatives of a scalar (Debye) potential.

By analogy with the corresponding expressions for the
electromagnetic perturbations, Chrzanowski’s formulas for
the metric perturbations were generalized by himself and by
Cohen and Kegeles* to all vacuum algebraically special
space-times. The proof that such expressions are indeed so-
lutions of the linearized Einstein equations was given by Ke-
geles and Cohen® by a direct substitution that, even in the
spinor formalism, involves a very lengthy computation. An
equivalent result was obtained by Wald® by a very simple
derivation based on a more general theorem. The metric per-
turbations found by these authors are given in terms of the
second derivatives of a complex scalar potential that satisfies
a second-order linear partial differential equation.

The purpose of this paper is to present a derivation of the
expressions for the metric perturbations mentioned above,
including the presence of the cosmological constant, by us-
ing the description of the algebraically special vacuum
space-times based on the complex two-dimensional totally
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null foliation that the complex extensions of these space-
times possess. This last formulation has been developed with
the objective of finding the algebraically special solutions of
the (nonlinear) Einstein equations for a vacuum or coupled
to a suitably restricted matter field”-!!; however, it is also
very useful for the integration of other field equations on this
class of space-times, e.g., those of the Killing vector fields, '
Killing spinors,'® massless spinor fields,”'*'* and Yang-
Mills fields."! In the derivation given here we make use of the
result that the Einstein field equations reduce, in the case of
an algebraically special vacuum space-time with cosmologi-
cal constant, to a single nonlinear second-order partial dif-
ferential equation for a scalar function—the so-called hyper-
heavenly, or #°57, equation—[Egs. (3) and (5) below].
The similarity between the #°5% equation and the equation
for the gravitational Debye potential given in Refs. 3-5 was
pointed out by McIntosh and Hickman. '

Il. THE 7% EQUATION

If g denotes the metric of an algebraically special solu-
tion of the Einstein vacuum field equations with cosmologi-
cal constant 4, then there exist, locally, complex coordinates
¢, p* (4 = 1,2) such that™'°

g=2¢'2dq"§(dpa + Qa3 dgP) (1)

where ¢ and Q,; are complex-valued functions, with Q5
= @34, and the indices are raised and lowered according to
¥y = €13Y°, ¢¥°=e*"P,. The complex two-dimensional
surfaces, given by ¢! = const, constitute the foliation men-
tioned previously.

Einstein’s field equations imply that ¢ =J, p“ + x,
where J, and x depend on ¢° only. By choosing a set of
coordinates ¢, p* such that J, and « are constant, it follows
that, if J, =0,

Qup = — 04050 —¥Liapsy, + A/ paps,  (2)
where d, =3 /dp", L, = L, (¢®), and O is a solution of
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_(adaﬂe)aA 3,6 — a‘gqu——KZL"‘a;,e+1—1i;(K2LA-p'i)2+%K2L‘pB<9,; 3,0
—?Kz ‘;I;; - (?)K_ZPAPB@‘ 35 © +Ak"2(p19,0 —0) =K*(N,p ' +7) , (3)

where N, and y are functions of ¢” only, and, in the case where J, #0,

Qs = — 33187205 W+ (ud® + (A /6))K,K; ,

where K, is a constant spinor such that K Ay, =1, = p(g"), and Wis a solution of

Lg% a0, W - 7194

+—;—K‘Px [K %Pyl € — (¢+K)KC]5:—5=NA'P‘+7’-

With respect to the null tetrad
s =~/i{6i 3 + 45, (an + Q3¢ 0 )] : (6)

the spinor components of the Weyl tensor satisfy
Ci111 = C,112 = 0 (which corresponds to the assumed alge-
braic degeneracy of the curvature) and, in the case where
J, =0,

C(3)E2C1122 = - gi ) (78)
while in the case where J,, 0,
Cc® = —-2/t¢3. (76)

The dotted components are given in the case J, = 0 by

and in the case J, 0 by
Ciusep =904 05 9 Op W — 6udJ 4 J3KeKp)
(8b)

If © or W is a solution of Eq. (3) or (5), respectively,
corresponding to a real solution of Einstein’s equations, then
Cs¢p is of the same algebraic type as C, zcp and hence
algebraically special; however, not every solution of Eq. (3)
or (5) corresponds to a real metric (with Lorentzian signa-
ture) and, in general, C ;-5 given by Eqgs. (8) will not be
algebraically special. Actually, Eqs. (1)-(5) follow from
the (complex) Einstein vacuum field equations assuming
the algebraic degeneracy of C,gzcp only, with C,;¢, arbi-
trary. This point is essential in what follows.

lil. GRAVITATIONAL PERTURBATIONS

Assuming now that © or W is a solution of Eq. (3) or
(5), respectively, corresponding to a given algebraically spe-
cial solution of Einstein’s equations and that © + 86O or
W + 6W also satisfies, to first order in 80 or 6 W, Eq. (3) or
(5), respectively, then, using Eqs. (2), (4), and (7), a
straightforward computation gives

J . o 3.
[$+Q3333—(38Qn)]3‘x—7¢ % =0,

%
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(4)
—ud KA 3,67 K 3,6~ W — (%)qS“K‘ 3,K%a,W
(5)
r
where y =« ~'80 in the case where J, =0 and y =6W
when J, #0.

From Egs. (1), (2), and (4) it follows that the metric
perturbation 8g generated by a solution of (9) is given by

8g= —23, 972 xde'eds®. (10)
This metric perturbation will be complex in general. In fact,
according to Eqgs. (8) the perturbation of the dotted spinor
components of the Weyl tensor is

8Cusep =9°04 95 9: p X, (11)
while, in the case J, =0, 6C 5, = 0 and if J, 70, only
8C,,,, can be different from zero. However, since we are
dealing with linearized equations, the real and the imaginary
parts of g are real solutions of the linearized Einstein equa-
tions and the perturbation of the Weyl tensor corresponding
to them is not necessarily algebraically special.

It turns out that Egs. (9)-(11) are valid in any coordi-
nate system ¢*, p# in which the metric has the form (1), even
though J, and x may not be constant. This can be readily
verified by checking that Egs. (9)-(11) are form-invariant
under any coordinate transformation that maintains the
metric (1) form-invariant.

By using the procedure given in Ref. 14, the expressions
derived above can be written in a covariant way, which gives
for the (real) metric perturbations

heprs = — 294267V 25 8*7 4pcp + Hoc., (12)
where the covariant derivatives are with respect to the back-
ground connection and 7,5, is a null Hertz potential

Tagcp = Ylilplclp s (13)
where /, denotes the multiple Debever—Penrose spinor of
the background curvature and ¢ is a complex function that
takes the place of y. (In the notation of Ref. 14,
¥ = ¢~3A~2y.) Equation (9) then amounts to

Viau® VR Tocpys — 6C s Teprs =0.  (14)
Equations (12) and (14) are equivalent to those postulated

in Ref. 5 for the case of vacuum, taking into account the fact
that!°

IAVBbIA =IBIA3AC ln¢. (15)
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Written in terms of the Newman—Penrose spin coefficients,
using (13) and (15), Eqgs. (12) and (14) correspond to the
expressions given in Refs. 3-6.

It may be pointed out that in all type D vacuum back-
grounds with cosmological constant, Eq. (14) admits sep-
arable solutions.'®

IV. CONCLUSION

The derivation outlined above exemplifies the power of
the approach to the dynamic equations of general relativity
based on the existence of complex two-dimensional null fo-
liations. It is noteworthy that the complex scalar potential
for the gravitational perturbations found previously by other
authors, through quite different approaches, corresponds
precisely to the first-order variation of the key function, © or
W, governed by the 7 equation.

It should be remarked that the arbitrariness in the dot-
ted components of the Weyl spinor, corresponding to a solu-
tion of the 57 equation, allows the possibility of having an
algebraically general perturbed metric.

By a procedure similar to that followed here, one can
consider the simultaneous perturbations of the gravitational
field and of a coupled electromagnetic, neutrino or Yang-
Mills field, provided that the (complex extension of the)
background space-time admits a complex two-dimensional
null foliation and that the background matter field is suit-
ably aligned to that foliation, by using the reduced form of
the Einstein equations coupled to one of these fields.>!! As
in the case of vacuum, the perturbed metric can be algebrai-
cally general and the perturbed matter field will not be neces-
sarily aligned to the foliation of the background space-time.
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These cases will be treated elsewhere.
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It is shown that the equations for a parallel-propagated frame along geodesics can be solved
explicitly by separation of variables assuming the existence of a valence-2 Killing—Yano tensor
that is indecomposable and such that the associated Killing tensor has no constant eigenvalue.

I. INTRODUCTION

In two previous papers,’? it has been shown by one of us
that the separability properties of the Hamilton—Jacobi
equation for the geodesics of the Kerr solution and the exis-
tence of a valence-2 Killing-Yano tensor therein allow the
explicit construction through separation of variables of a
parallel-propagated frame along an arbitrary geodesic in
Kerr geometry. This result proved to be useful in the study of
tidal effects near a black hole®* as it allowed the explicit
computation of the tidal tensor. On the other hand, it is
known® that the existence of a valence-2 Killing—Yano ten-
sor ( f,, ) thatis indecomposable and such that the associat-
ed Killing tensor (X,,, : = f,,./,” ) has no constant eigenval-
ue is enough by itself to ensure the existence of separable
coordinates for the Hamilton-Jacobi equation.

One is thus naturally led to ask the question of whether
the method used for Kerr could be adapted to construct a
parallel-propagated frame under the only assumption of the
existence of a Killing—Yano tensor having the above proper-
ties, and in particular with no reference to any field equa-
tions. In the present paper, we show that this is indeed the
case, and in particular we extend the results of Refs. 1 and 2
to all the “nonaccelerating” Petrov type D vacuum solu-
tions, that is, the Carter solutions® and the Debever-McLen-
aghan null orbit solution.”

In Sec. II we briefly recall some known facts about the
metrics admitting a Killing—Yano tensor ( f,, ) having the
above properties. In Sec. III we construct our parallel-pro-
pagated frame following a procedure inspired by that of Ref.
1.

Throughout this paper, all indices run from 0 to 3. We
denote the components of any tensor with respect to the co-
ordinate basis with Greek indices and with respect to an
orthonormal frame with Latin indices in round brackets.

Il. THE METRICS

By a valence-2 Killing—Yano tensor, we mean a skew-
symmetric tensor ( £, ) satisfying the equation®

VoS + Vol =0. (2.1)

It follows from Eq. (2.1) that, if (x*) is the unit tangent
vector to a geodesic C, then the vector (L *) defined by

Le=fouf (2.22)
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is parallel-propagated along C, that is
u*V,LP=0. (2.2b)

We shall consider only the case of valence-2 Killing—
Yano tensors ( £,, ) that are indecomposable, in other words
such that the two-form #: =} f,, dx* Adx" satisfies

F N F#0, (2.3)

and such the associated Killing tensor (K,,,: = f,,f,”) has
no constant eigenvalue. Indeed, for the metrics with a Kill-
ing-Yano tensor possessing a constant eigenvalue, the exis-
tence of more than one Killing vector never follows automat-
ically from that of the Killing-Yano tensor.’ The existence
of separable coordinates for the Hamilton—Jacobi equation is
thus not ensured without further assumptions. We then have
the following result.>*

Theorem: For every metric admitting a valence-2 inde-
composable real-valued Killing-Yano tensor (f,,) such
that the associated Killing tensor (K,,: =/f,,f,”) has no
constant eigenvalue, there exist local coordinates (x*)

= (u4,0,w,x) and an orthonormal frame (0‘®) = (0©, 0¥,
0?, @®) in which

ds’ = Nard» 0®e®, (2.4a)
V(£ — %, )dxH Ndx” = ap(x0™ A 0 + we® A 0?),

(2.4b)
where

0% =-;- 1/2[(1 +f)—(du —x%dv)
= fzu -2, (2.52)

oV = Z”2[(f 1)—(du —x%dv)
f2 (1 +f)— (2.5b)

0.)(2) - _ (Z”2/X)dx,

o = (X /Z'V*) (du + w* dv), (2.5¢)

Z:=w+x% gy =diag(—1,+1,+1,+1),

(2.5d)
where W and X are arbitrary functions of w and x, respec-
tively, and where a, and f are arbitrary real constants.
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The metric given by Egs. (2.4) and (2.5) manifestly
possesses a two-parameter Abelian group of isometries that
acts on non-null or null orbits according to whether f #0 or
Sf=0. In the former case, the isometry group is invertible
and hence orthogonally transitive,'® while in the latter case it
is orthogonally transitive but not invertible. We make the
important observation that when the Einstein vacuum field
equations are imposed on the metrics of the above theorem,
one obtains!! Carter’s [ 4] solutions, which contain the Kerr
solution as a special case, and the null orbit solution of Deb-
ever and McLenaghan. Also, the orthonormal frame (@‘®)
isidentical when f? = 1 to Carter’s symmetric frame,® which
has proven itself to be the simplest for treating the separabil-
ity properties of these metrics.'?

lll. THE PARALLEL-PROPAGATED FRAME

In this section, we shall construct a (locally defined)
orthonormal frame (A, A4, A,, A;), which is parallel-propa-
gated along an arbitrary timelike geodesic C of the metric
given by Egs. (2.4) and (2.5). The procedure we follow is
modeled on the one used for the Kerr solution in Ref. 1.

We choose A, to be the unit tangent vector to C, which is
obviously parallel-propagated. Using the separability prop-
erty of the Hamilton—Jacobi equation for the geodesics, we

easily obtain that
1 +f 1 AW
= v (151
(3.1a)
1-f 14 f
/{o(l) 1+f2 Wzllz (ﬁ wa)+( 2 )Zl/zp“”
(3.1b)
Ae® = — (X/Z")p,, (3.1¢c)
Ao® = (1/Z'V2X) (B + x*a), (3.1d)

where the p, are the momenta canonically conjugate to the
velocities x*. They are determined by the following relations:

Xp2 =K—x*— (1/X*) (B + x’a)?, (3.2a)
_ 2
W, + 21556 - v,
= —K—w2+( fz)f (B—w?a)?, (3.2b)
p. =2, (3.2¢)
P, =58, (3.2d)

where a, B, and K are separation constants. It should be
noted that X can be expressed as

- Kyv/lo'l%ov, (326)
where (K, ) is the Killing tensor associated to the Killing—
Yano tensor ( fm,) given by Eq. (2.4b), and reduces to
Carter’s “fourth constant of motion” in the special case of
the Kerr solution. Now, from Egs. (2.2a), (2.2b), and
(2.4b), where we have chosen for convenience a, = 1, we
know that the unit vector A, defined by

At = (/K V2" Ay, (3.3a)

whose components in the symmetric frame (‘®’) are expli-
citly given by
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1,9 = (1/K V) x4, ™, (3.3b)

A0 = (1/K Y2)xA,, (3.3¢c)
,12”) = — (I/K V) wi,®, (3.3d)
A, = (/K V) wi,?, (3.3e)

is parallel-propagated along C and orthogonal to A,
AV A =0, Ag A =0. (3.3f)

To obtain the remaining vectors A, and A, of our paral-
lel-propagated frame, we make a natural choice of two vec-
tors A, and A,, which form an orthonormal frame when tak-
en with A, and A,. They are defined by

A9 =02,, 1,9 = (1/K"*)owd §V, (3.4a)

A,V =04, 1,V = (1/K Y*)owld?, (3.4b)

AP = (1/0)4,?, 1,® = (1/K ) (x/0)A>,
(3.4c)

AP = (1/0)Ae®, 4, = — (/K'*) (x/0)A,?,
(3.4d)

where
o: = ((K —x2)/(K + uw?))"/2 (3.4¢)

Now, as was the case for the Kerr solution, the vectors
A, and A, are obtained by performing an appropriate spatial
rotation on A, and A,, which can be expressed in term of a
parameter ¥ by

A= Xl cos ¥ — 13 sin ¥, (3.5a3)
A=A, sin¥ + A, cos V. (3.5b)
The conditions for parallel transport of A, and A, along C,

Ao"vyﬂrlv = 0, /‘{,O“V’ui:;v = 0, (3.6&)
are now equivalent to
1/2 v
d\I’ K [ﬂ+xa w'a ,B], (3.6b)
dar  z lk—x K+ w?

where 7 denotes an affine parameter associated to the unit
tangent vector A,. It then follows using Egs. (2.5), (3.1),
and (3.2) that ¥ takes the separable form

Y(wx) =F(w) + G(x), (3.7a)
where
Fw): = k2 [¥e=B dw :
K+w' J(B=w?a)?— WK + u?)
(3.7b)
G(X): =K1/2 ﬂ+x2a dx .
K—x* [XZ(K=x%) — (ax* + B)?
(3.7¢)

It is easily checked that the expression for W given by Egs.
(3.7) reduces to the one given in Ref. 1 for the Kerr solution.

Finally, it should be noted that the above method would
fail to produce a parallel-propagated frame along the null
geodesics of the metrics admitting a conformal valence-2
Killing—Yano tensor, that is a skew-symetric tensor (D, ),
which satisfies

V,D,.5 + V5D,

= — §V5D Bagﬁ,,, + a}V‘;D 6ﬂg.’,a + &V&D 5ygpa. (3.8)
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Indeed, it has been shown by Jeffryes'® that there exist me-
trics admitting a valence-2 indecomposable conformal Kill-
ing-Yano tensor (D,, ), such that the associated conformal
Killing tensor (B,, = D,,D,”) has no constant eigenvalue,
that are conformally equivalent to a metric of the form given
by Egs. (2.4) and (2.5) with a conformal factor that is inde-
pendent of 4 and v. (Although it was explicitly shown that
there exist metrics admitting conformal valence-2 Killing-
Yano tensors that are not conformal to ones admitting Kill-
ing—Yano tensors.) On the other hand, it is well known that
the equations of parallel transport along a geodesic are not
conformally invariant, even in the case of null geodesics.

IV. CONCLUSION

We have shown that the equations for a parallel-propa-
gated frame can be solved explicitly by separation of varia-
bles assuming only the existence of a valence-2 Killing-Yano
tensor that is indecomposable and such that the associated
Killing tensor has no constant eigenvalue. The result ob-
tained above for timelike geodesics can be easily extended to
spacelike geodesics and null geodesics using the method of
Ref. 2.
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A method for generating exact Bianchi type II cosmological models with a perfect fluid
distribution of matter is presented. Two new classes of Bianchi type II solutions have been
generated from Lorenz’s solution [D. Lorenz, Phys. Lett. A 79, 19 (1980) ]. A detailed study of
physical and kinematic properties of one of them has been carried out.

I. INTRODUCTION

In cosmology, the Friedmann-Robertson-Walker
(FRW) models play an essential role. It is not believed that
these models truly represent the universe, but in some sense
they are good global approximations of the present universe.
FRW models are characterized by (i) the universe being the
same at all points in space (spatial homogeneity) and (ii) all
spatial directions at a point being equivalent (isotropy).

In recent years, experimental studies of the isotropy of
the cosmic microwave radiation and speculation about the
amount of helium formed at early stages and many other
effects have stimulated theoretical interest in anisotropic
cosmological models.

The spatially homogeneous and anisotropic Bianchi
models present a medium way between FRW models and
completely inhomogeneous and anisotropic universes and
thus play an important role in current modern cosmology. A
spatially homogeneous Bianchi model necessarily has a
three-dimensional group, which acts simply transitively on
spacelike three-dimensional orbits.

Here we confine ourselves to a locally rotationally sym-
metric (LRS) model of Bianchi type II. This model is char-
acterized by three metric functions R, (¢), R,(¢), and R;(¢)
such that R, = R,+# R,. The metric functions are functions
of time only. (For non-LRS Bianchi metrics we have
R,#R,#R,.) For LRS Bianchi type II metric, Einstein’s
field equations reduce, in the case of perfect fluid distribu-
tion of matter, to three nonlinear differential equations.

If we restrict ourselves to a barytropic equation of state
such as

P=p (stiff matter),

we are able to reduce the field equations to a Riccati equa-
tion, and by the same procedure as that used in Refs. 1 and 2,
we generate several new exact solutions of Bianchi type II;
the known solution used here is that given by Lorenz.>

The geometric and kinematic properties of one of them
has been studied in some detail. The nature of singularity has
been clarified. It then appears that the new solutions have a
barrel singularity.

11. FIELD EQUATION AND GENERATION TECHNIQUE

In an orthonormal frame, the metric for Bianchi type 11
in the LRS case is given by®

ds* = n,0'0’,
where the Cartan bases o are given by

77,-j = diag( - 1, 1, 11 1)’ (2'1)
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o’ =d, ol=Se!,
(2.2)

o> = R(1)?, O =R)o?,

where R (t) and S(¢) are the metric functions. The time inde-
pendent differential one-forms o' are given by

o' =dy + x dz, @* =dz, and w0’ =dz.
2.3)
The field equations, in the case of perfect fluid, are
G, =8xT,, (2.4)
with
T; = (p+p)uu; +n,P, (2.3)

G, being the Einstein tensor and p and p being, respectively,
the energy density and the pressure of the fluid, read

2%4_-8—2—%?—::—87;7, (2.7)
where * - ”’ represents derivation with respect to 7. We con-

sider here the special case of the stiff matter; Eq. (2.6) and
(2.8) imply
S R

5 R R? _

sTRPSR TR @
By performing the substitution

r=R/R, (2.10)
Eq. (2.9) becomes

F4+2P74+3r(S/8)+8/5=0, (2.11)

which is a Riccati equation in r; it can be linearized by means
of change of function

r=r,+1/B. (2.12)
So we obtain
B+B(—38/S—4r) =2, (2.13)

r, being a particular solution for (2.11).
Equation (2.13) is a linear first-order differential equa-
tion. The solution for (2.13) is then

© 1986 American Institute of Physics 1582



R(t) =Ry() [J (1, C)]V*/Cy, (2.14)
where
J(t,C)=J-;—3%+C, (2.15)

and C and C, are two arbitrary constants.

Note that Eq. (2.9) can be considered as a Riccati equa-
tion in.S /S and, by a similar method to that given in the case
(2.11), we obtain the solution

S(1) =So(t)X[M(t’ C, )/Ca] ’ (2.16)
where
dt
M(t, Cz) = W+Cz’ 2.17)

and C, and C, are two arbitrary constants.

We notice here, in the case of (2.14), the metric function
R, (1) is a known solution of (2.11). Hence, from the couple
of metric functions [Ry(?), S(2)], our generation technique
allows us to obtain the new one [R(?), S(¢#)]. A similar
statement holds in the case of (2.16).

Ilil. GENERATION OF NEW EXACT SOLUTIONS

Using the Bianchi type II exact solution elaborated by
Lorenz* as a particular solution to Eq. (2.12), we are able to
linearize the Riccati equation (2.11). The Lorenz solution
reads

SHr)=2F —-bHA"(n), (3.1)
R%(r) =[9*9/2(¢* —b?)]A(7), (3.2)
where
A(r)=(g* — b?)cosh[2(g* — b*)*r + ¢], (3.3)

and g, b, ¥, and ¢ are arbitrary constants, with |g| > |6 |. The
pressure and density are given by

P=p=>b%/871S’R*. (3.4)

The temporal variable 7 is related to the old familiar one ¢ by
the relation

dt=SR?*dr. 3.5)

Inserting now the values of S(¢) and R (¢) into formulas
(2.15) and (2.14), we obtain the new class of solutions

S ) =2 —bHA ("), (3.6)

R*(t) =

1 -1
CZ(qf+¢)]/1 ,
2(q‘~’—b2)a[ g ™
(3.7)

where C and C, are two arbitrary constants. We call this
model E1.
Applying again formulas (2.15) and (2.14) (with El as
a particular solution), we get the new class of solutions
S:t) =2(¢g*—bHA " (n),
(3.8)

R2(t) =

A(r) { —1
2(¢—-b3C, 1 ¢

X [qu[qu — ln( _1 + Cez“'”"”)] + C3] .
q
We call this model E2.

+ CeZ(qr + ¢)]
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IV. GEOMETRIC AND KINEMATIC PROPERTIES OF
CLASS OF SOLUTIONS OBTAINED

In this section we discuss the kinematic and geometric
properties of our solutions. We first find the values of the
various kinematic quantities and then look more closely at
these values.

The projection tensor 4, = g,, + u,u, is used for split-
ting the covariant derivative of the four vector velocity u; as
follows:

ua;b - - i‘aub +wab +Uab +‘!®hab ’ (4.1)

where iy, @,,, ®, and o,, are, accordingly, called accel-
eration, rotation, scalar expansion, and shear, respectively.®
The expansion tensor 6p, is defined by the relation

0=g"%,,. (4.2)
The shear o is given by
o =lo,z0°%. (4.3)

Two other important geometric quantities are also intro-
duced; they measure, respectively, the dynamic importance
of the shear and the dynamic importance of the fluid. They
are, accordingly,

Q=13p/@.

(4.4)
(4.5)
Using metric (2.2) and straightforward calculation, we ob-
tain

©®=2R/R+5/S, (4.6)

P =4(R/R—-S5/S). (4.7)
The acceleration and the rotation of our models are zero.

Let us study now our universe E1 (a similar study holds
for the universe E2). The density p and the pressure P are
given by formula (3.4). We can then immediately conclude
that the strong energy conditions of Hawking and Penrose,®

which require that p + p>0 and p + 3p>0, are always veri-
fied. Using formulas (4.6) and (4.7), we find

®@ = (1/SR*)[2(¢* — bH)'?
Xtanh(2(g® — b2)?r + ¢)

+2Cq? /(- 1/29) + CE9 9], (4.8)
o? = (1/35°R*){2(¢* — *)'7?
Xtanh[2(¢g* — 6*)"’7 + ¥]
+ Cqe? 9+ P /(- 1/2q) + Ce> T +#}, (4.9)
The energy density p is given by (3.4) so we have
p=(1/87)(b*/S’R*), (4.10)

where S 2 and R 2 are given by formulas (3.6) and (3.7). For
SR2=0, (4.11)

we have a singularity ( p—>w, ®—>w, 0—w ). Equation
(4.11) is satisfied for

CET+9 = 1/2. (4.12)
The above equation is verified for
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R 1H(L) _¢ (4.13)

29 \2¢C/ ¢

This equation can always be satisfied (¢ and C are two arbi-
trary constants). Hence, for 7= 7, El expands without
bound (®— w0 ); this expansion is highly anisotropic. Since

S2=82=2(¢*-b*A ~(r,),
and R % = 0 for 7—>7,, we have a “barrel” singularity.’

We can now evaluate 5 and obtain

p—1,
Q goes to zero when 7—r,. Hence, matter is dynamically

negligible near the singularity; this agrees with a result al-
ready given by Collins.?

V. CONCLUDING REMARKS

As mentioned by Lorenz himself, his solution reduces in
a particular case to that of Taub® and in other case to that of
Maartens and Nel.'® Thus model E1, which generalizes the
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Lorenz solution, constitutes a larger class of solution than
those given by Taub and Maartens and Nel.
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An analysis of supersymmetric Kaluza-Klein theories is begun by obtaining the Casimir
operators for the super-Poincaré algebra in any number of dimensions. The knowledge of these
operators is used to decompose the general scalar superfield in 11 dimensions into its irreducible
parts. The irreducible superfields are expressed as products of Grassmann-Hermite functions and
Grassmann-Bargmann-Wigner multispinor fields. Some Lagrangians for these superfields are

written down. The formulation is off shell but global.

I. INTRODUCTION

We shall understand by the Kaluza—Klein hypothesis
the conjecture that the physical continuum has more than
the four dimensions that are usually ascribed to space-time
and inferred from our relatively low energy physics. There
are many ways of implementing this hypothesis that differ
either in their formulations on the expanded physical contin-
uum or in their rules for dimensional reduction. Here we
shall make two basic assumptions only.

First, to describe the new manifold in the small let us
assume an extended Poincaré or rotation-translation group
in n dimensions with no additional timelike dimensions. Sec-
ond, let us assume that the Poincaré algebra is also extended
by the supersymmetry generators. The first assumption im-
plies that the new manifold is homogeneous and isotropic in
the small and the second introduces a particular physical
hypothesis, the Fermi-Bose symmetry. These assumptions
are too general to lead to a well-defined theory but provide
conditions that hold for a large class of theories. In this paper
we shall not discuss dimensional reduction or field content
but it is of course known that local supersymmetry implies
the Einstein gravitational field and some version of super-
gravity.

Off-shell formulations of extended supergravity in four
dimensions have been discovered only for N=1and N = 2.
Since the potentially most interesting theory corresponds to
N = 8 (maximal extension), it would be an important ad-
vance if a method could be devised to find the auxiliary fields
needed to complete its off-shell algebra. One method that has
been suggested requires the introduction of central charges.
This possibility may be investigated in the context of a Ka-
luza-Klein theory: The central charges may then be identi-
fied with the components of the momentum associated with
the additional dimensions, since these components commute
with the usual space-time part of the angular momentum.
Then these generators belong to the center of a four-dimen-
sional supersymmetrically extended Poincaré algebra.

Since N = 8 supergravity in four dimensions can be re-
formulated as simple (N = 1) supergravity in 11 dimensions
we shall emphasize the 11-dimensional Kaluza—Klein space.
This space is especially attractive because it spontaneously
compactifies into a ground state that is the product of space-
time and a potentially realistic internal space.
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Nevertheless there are many difficulties standing in the
way of a realistic physical scenario for any of the models of
supergravity that have been proposed so far.! For this reason
the present paper is devoted to an essentially mathematical
investigation.

Il. SUPERALGEBRA

The Poincaré algebra in » dimensions (P, ) is given by
the commutation relations

[P,P3] =0, 2.1)
[JABJCD] = _415[44 [CJB ]D], (2.2)
[PA,JBc] =2i6A[BPCl (2.3)

where the indices run from O to » — 1 and are raised and
lowered with the Minkowski tensor

7 = Nap = ding(+ — - —).

The components P,, where 4 = 5,...,n — 1, may be regarded
as central charges in four dimensions.

The Dirac algebra in n dimensions consists of matrices
of dimension A = 2["?), In 2, 3, 4, 8, 9 mod 8 dimensions
one can define Majorana spinors. Introduce fermionic gen-
erators into the algebra:

Q% a=1,.A.

This satisfies the Majorana condition and the commutation
relations

{007} = (BC "), (2.4)
[g=P,]=0, (2.5)
[V4,:0%] = — (i/2)T 5", Q% (2.6)

The commutation relations (2.1)-(2.6) define the super-
Poincaré algebra in # dimensions SP,. In the rest frame we
have the “little group” SO(n — 1).

In an odd number of dimensions Q corresponds to the
representation

[3-4],
v = [n/2],0of SO(n — 1,1). Upon restriction to SO(n — 1),
Q corresponds to

741+ Bt 4
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These two parts are separated by the operators § (7 + I'y)
and } (I — I'y), which are the rest frame forms of the covar-
iant operators in (2.7) below. (In an even number of dimen-
sions Q corresponds to the reducible representation

341+ g =30,

v = [n/2], of SO(n — 1,1). These two parts are separated
by the operators § (/+1T',,,) and § (/—T, ), where
I, .. is the analog of Dirac’s ¥ in four dimensions. Each

representation becomes [} - }] when SO(n — 1,1) is re-

—v—-1=
duced to SO(n — 1).)

P? = P,P“is an obvious Casimir operator of the super-
algebra. Its eigenvalues M ? characterize the representations
and can be used to define positive and negative “‘energy”
projection operators

Ay =(1/2M)(M + P). (2.7)
They satisfy
AAL =0, A A, =A,, A, +A_=1  (28)
CA,CT=A_T, (2.9)
A P=+MA,. (2.10)
We can then split the Majorana spinor Q into two pieces:
Q. =A.0 (2.11)
with the anticommutation relations
{0.%0.%=0, (2.12)
{0.%0_F}=(A_BC~HP=M(A,C~ 1.  (2.13)

So we have raising and lowering operators, which we can use
to construct the irreducible representations of the superalge-
bra. We should notice at this point that @, and Q_ each
have only 1 A components.

We shall consider the action of this algebra on the space
of superfields. For example, let ® be a scalar superfield.
Then

®x)= ) 0 " (O)F,,..(x).
o e

Here the 7 ;... are spinor indices in the n-dimensional space,
the x are the space-time coordinates, and the 8 are the anti-
commuting coordinates of superspace, while ' and
F . .. are contravariant and covariant multispinors in Ka-
luza—Klein space. Let X be a generator of the superalgebra.
Then the action of X on the superfield will induce corre-
sponding transformation on the tensor coefficients F, .. as
follows:

50 = X9,

OF, . = ; D, . % Fg ..

In this way the space of tensor fields like F, .. (x) be-
comes the basis for a representation of the superalgebra. The
basis {F_,, .. } is very large but reducible. Our aim is to pro-
ject out of the total superfield the parts that are irreducible
under the superalgebra. These irreducible parts contain both
the physical fields and the auxiliary fields that are needed to

(2.14)

(2.15a)

(2.15b)
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complete the off-shell algebra. To determine these irreduci-
ble fields we next discuss the irreducible representations.

li. CASIMIRS OF SUPERALGEBRA

To find the full set of Casimirs one may try to generalize
the corresponding operators for the Poincaré group in four
dimensions. For this purpose one needs a generalized spin
operator U, with the properties

[UissPc] =0, (3.1)

[U.0%] =0. (3.2)

If (3.1) and (3.2) are satisfied then Casimirs may be con-
structed as the traces

trUym™.

Although these traces will be Casimirs for all values of m, the
number of independent ones is limited and equals the rank of
the group. In addition since the traces of the odd powers may
be expressed in terms of the traces of the even powers, we
shall choose

C,=Tru> (3.3)
To obtain an explicit form of U, we impose

Uwip = — Upas (3.4)
PAU,,; =0. (3.5)

Equation (3.5) is imposed so that the only nonvanish-
ing components of U, in the proper frame [P4 = (P%0)]
are Uy, wherej, k = 1,...,n — 1. Then U, U*® will describe
the generalized (spin)? and in this respect it resembles the
square of the four-dimensional Pauli-Lubanski vector. Since
U, is an angular momentum satisfying (3.4) and (3.5), let
us put (I'-tensors are defined in Appendix A)
Uws =Jan +aP5(Jgy Py —JpsP,) + bP QT 5 Q.
3.6)

Then (3.4) holds by construction. To satisfy (3.5) choose
a = 1/P% then (3.1) is also satisfied. Finally (3.2) requires
that b = — i/4P2 Therefore

1 | P>
Up=J4s +F§-PE(JEAPB ~JesPy) “‘%}fz— Ol Q
(3.7)

is the object from which we can construct the Casimirs, ei-
ther by (3.3) or by forming scalars out of the generalized
Pauli-Lubanski tensors:

wh = g AS T Ep Uy p e Up s
The commutation rules for this generalized spin, or super-
spin, are

[Up, UP) = —4ib, €U, ")

— (4i/P?)P, Uy \[°PP),
A,B,.C,D=0,.,n—1.
In the rest frame one finds

[U, U] = —4i6,'“U,)"", ij=1...,n—1 (39)
Then the U; satisfy the algebra of the rotation group
SO(n — 1); that is, SO(n — 1) is the “little group.”

n— &

(3.8)

R. Finkelstein and M. Villasante 1596



The Casimir operators

C,=TrU"= UB,BZUBZB’ UBszl (3.10)
become in the rest frame
Cn=USUS U, " (3.11)

When n — 1 is even (n — 1 =2v), the operators in
(3.11) do not suffice to characterize completely the repre-
sentations of SO(n — 1). In that case one needs to make use
of the Pfaffian of the matrix U/,

C', =Pf(U)=€""U,,

iy " Mg, g, (312)
and a complete set of independent Casimir operators is
C.,Cy.,C,_1,C',.

When n—1 is odd (r=2v), the traces
(C,,C,,...,C,_;) are sufficient to form a complete set.
Therefore we can choose, as the complete set of Casimir op-

erators for SP,,,

P:C,, m=1.,v—1 if n=2,
r:C,.C',, if n=2v+1,
where

CIV = (I/M)EA' ...A»PAI UA,A, UA,,_ A,
where M is the eigenvalue of P 2. Equation (3.13) reduces to
(3.12) in the rest frame.

Since the operators C’, and C,, are “Lorentz” invar-
iants, they can be evaluated in the rest frame, and, therefore,
the problem of finding the eigenvalues for the operators
(3.10) and (3.11) of SP,, reduces to the problem of finding

the eigenvalues for the operators (3.11) and (3.12) of
SO(n —1).

(3.13)

m=1..v—1

IV. SUPERSPACE

The algebra SP,, can be represented in the superspace®
with coordinates

(x4,0%), A=01,..,n—1, a=12..A,

where the 8 are anticommuting coordinates that are ar-
ranged in a Majorana spinor. Superfields are arbitrary func-
tions of these coordinates that are at most polynomials of

degree A in the @ coordinates:
A
®,(x,0) = z g ...0“’X,al,,,a](x). (4.1)
ji=o

Here J represents a collection of Kaluza-Klein indices.
These general superfields provide a basis for an enlarged su-
per-Poincaré algebra that includes the covariant derivatives
D “, These obey the commutation relations

{@*D%} =0,
{D*DF} = — (PC "), (4.2)
[PAD*] =0,
[Jas:D ] = — (i/2)T 5%, D”.

Q “ and D “ may be represented as differential operators:
Q“=i<%+%l’a303), (4.3)

1597 J. Math. Phys., Vo!. 27, No. 6, June 1986

De=i (a‘;a - %P“ﬁoﬂ) : (4.4)
We can decompose D in the same way as Q:

D,=A,D and D_=A_D, (4.5)
which satisfy

{D,*D,"}=0, (4.6)

{D,°D_Py=M(A_C )= —M(A,C "™~

The basis states for an irreducible representation of P,
are generated by first applying to a rest state the rotations of
the little group to obtain a manifold of rest states, and by
then applying the boosts that generate states with arbitrary
momentum. To obtain the basis states for an irreducible rep-
resentation of SP, we may first apply the operators @, and
their products to the manifold of rest states just described
and we may then apply boosts to the resulting states. If the
initial rest state is annihilated by Q_, one will thereby obtain
an irreducible representation of SP,. Therefore an irreduci-
ble superfield can be generated from an irreducible
SO(n — 1) representation |f2), serving as a Clifford lowest
state (Q_|Q2) = 0), by application of the A/2 lifting opera-
tors @, . One obtains

12), 0.°10), @, 10, *|Q),...Q, 1 - @, *|0).
4.7)
The dimension of this representation is then
A/2
dim X ) (A;Z) = 242X dim Q. (4.8)
ji=o0

Equivalently, we can generate it from a SO(n — 1) state
|Q'), serving as a Clifford highest state: @, |Q’) =0 by ap-
plication of the A/2 lowering operators Q¢ ,

), @), @_=Q_=|Q’),

e @l @_"l|Q). (4.9)
The dimension of this representation is
dim Q' X252, (4.10)

In a similar way, a general superfield may be obtained from
an irreducible superfield (a super-Poincaré state) | Q) acting
now as a Clifford lowest state D_|Q1) = 0, by application of
the A/2 raising operators D , “,

|2), D.7Q), D, 'D =I|Q)

wD D+“m}|ﬁ)’ (4.11)
or from a Clifford highest state |Q'), D |Q') = 0, by appli-
cation of the A/2 lowering operators D_%:

1), D_2|Q), D_'=D_=}|q),

w D o, D_amlmr), (4.12)
with dimensions 242 dim Q and 242 dim V', respectively.
For instance, the dimension of the general scalar superfield
is 2472 242,

Now we particularize to the 11-dimensional case:
n =11 and A = 32. The spinor D splits into two parts D

and D_, which transform according to the representations
(1413 —4] and [14111] of SO(10) in the rest frame, re-
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TABLE I. Decomposition of totally antisymmetric Kronecker product.

J D¢ ..D

0 [00000]

1 1343 -1

2 [11100]

3 [33144]

4 [22000]®[21111}

5 [33444] @ [33331]

6 [31100)@(22111)

7 [3433 —41ef33314]
8 [40000]8[31110]®{22200]
9 [31i44]e[3434 — 1]
10 [31100]@(2211 —1]
1 [3344 —1]e[333] 3]
12 [22000}®[2111 —1]
13 [334) —4]

14 [11100]

15 {14344]

16 [00000]

spectively. Then
D, la ,,, D+"‘1]

corresponds to the totally antisymmetrized jth Kronecker
power of [1144 —}], which has the dimension (;°). We
have reduced these product representations into their irre-
ducible components. The results are givenin Table I. If D _ is
used then Table I is inverted.

Table I tells us immediately the “superspins” (highest
superweights) included in the scalar superfield in 11 dimen-
sions. It contains 27 irreducible superfields, some of them
degenerate. The number of ordinary fields is huge. Later we
shall see how to separate the different irreducible super-
fields.

V. THE SCALAR SUPERFIELD
We consider the scalar superfield. For this case one has

1 = d
JAB = _(xAPB —‘xBPA)+'2_10FAB -ﬁ.

(5.1)
Using (5.1), (4.3), (4.4), and (3.7) one finds for U, the
following simple expression:

Usp = —3i(PE/P?)DTg,pD. (5.2)

One easily checks that this U 5 satisfies (3.8) if D “ satisfies
(4.2). However, (5.2) describes generators U, for only a
special choice of J ;5. Therefore only a small number of rep-
resentations of (3.8) and (3.9) can be constructed if U, is
restricted to (5.2). In order to identify these particular re-
presentations of SO(n — 1) we compute the eigenvalues of
the Casimirs that follow from (5.2). These same eigenvalues
will also give us the representations of SP,, included in the
scalar superfield.

Vi. CASIMIRS AS FUNCTIONS OF COVARIANT
DERIVATIVES

The Casimirs are given by (3.4) in terms of (4.3). For
example,
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Ci=+% (PEPF/P4)(5FEABD) (BFFABD)- (6.1)

As described in Appendix B, C, may be simplified by repeat-
ed Fierz transformations where the precise anticommuta-
tion relations of the D * must be taken into account. One gets
the result

C, =} (1/P*)[(DD)? - 16*°P2]. (6.2)
All the even Casimirs may be expressed in terms of

Y =U,cUS. (6.3)
Then

C,=trY", m=1234 (6.4)
We may write

Y o=XN,, +2Z,5 +4U,;, (6.5)
where

N,=8,—P,Ps/P? Z,=2Zp, (6.6)

The antisymmetric part of ¥, is simply 4iU . In addition

PAY,, =0, P4Z,,=0. (6.7)
Then

trY=10X+trZ
or

C,=10X+trZ (6.8)

According to (6.8), Xis fixed by C, alone if Z vanishes. If Z
happens to vanish for a particular representation then it is
possible to express all Casimirs as functions of (DD)?and P2
for that representation as one sees from (6.4), (6.5), (6.7),
and (6.2). In fact one finds if Z = 0,

C,= — (C,/10)(160 — C)),
C; = (C,/100) (C,> — 480C, + 25 600), (6.9)
C,= — (C,/1000)[40(320 — 4C,)? — C,(160 — C})?].

Here C, is exact for all representations but the other expres-
sions are correct only if Z vanishes for that representation.

VIi. EIGENVALUES OF (DD)2 AND CASIMIRS

To evaluate the Casimirs according to the above formu-
las one needs only the corresponding eigenvalues of (DD)2.
The latter may be determined as follows. Since D, like Q, isa
spinor in the 11-dimensional space it has 2° = 32 compo-
nents. Therefore if a completely antisymmetric multilinear
form has more than 32 factors, it will vanish. Since these
forms are polynomials in (DD)?, a vanishing form provides
a characteristic equation for the eigenvalues of this operator.
One may construct completely antisymmetric functions of
the D ¢ as follows:

D=} [D*,D%] = — D=, (7.1a)
D@t = {D® D %%} = — D D%, (7.1b)
By forming commutators and anticommutators alternately

we obtain completely antisymmetric functions of the D“.
Let

G=DD=C,D*D?=C,D%, (7.2)
G, =Cop..Cop D™ P, (7.3)
G, =G, Gy,=1, G_,=0. (7.4)
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The product GG,, can be decomposed using the formulas in
Appendix A. Then we get the recursion relation

G, =GG, — (m/2)(A—-2m +2)P%G,,_,,
where
A =272,
Here A = 32.
Since there are only 32 different D %, any antisymmetric
functions containing more than 32 D * must vanish. Then
Gl7 = Calﬂl oo (7.6)

If (7.6) is expanded by the recursion formula (7.5) one
obtains a polynomial in G 2. Let

(7.5)

Ca.,ﬁ.-,D aBy - apbyy e 0.

G?=x*P? amn
The algebraic equation (7.6) becomes

xiAsx”=O, (7.8)

0

where

Ag=1,

A,= — 816,

Ag=262752,

As= — 42828032,

A, = 3,773,223, 168,

A,= — 177, 891, 237, 888,

A, = 4, 165, 906, 530, 304,

A, = — 40, 683, 662, 475, 264,

Ay = 106, 542, 032, 486, 400.

The 17 roots of (7.8) are

x, = +2k, k=0,.,8, (7.9)
or

(DD)? = (2k)?P?, DD = + 2k P~
The corresponding eigenvalues of C, are

Cik =3 [%:2—16]. (7.10)

The eigenvalues of the Casimirs C,, C;, and C, may also
be computed from Eq. (6.9) for particular representations if
Zvanishes. If Z does not vanish, it is still possible in principle
to find the eigenvalues of C,, C;, and C, by obtaining polyno-
mial equations for these operators just as for DD. If the pro-
cedure were fully carried out, one would thereby determine
the irreducible representations of SO(10) that can be real-
ized in terms of the generators (5.2) and the commutation
rules (4.2). This procedure is not practical, however, and in
Sec. VIII we calculate the eigenvalues of C,, C,andC,bya
different method. After this is done we discover a few repre-
sentations for which Eqs. (6.9) are indeed valid and for
which we conclude that Z vanishes.

VIIl. EIGENVALUES OF CASIMIRS OF SO(10)

Wereturn to the general definition of C, in (3.3). Oneis
then no longer limited to the particular construction of C, in
terms of the covariant derivatives D * such as (5.1). The
eigenvalues of C,, the Pfaffian and similar operators have
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been computed quite generally for the classical groups by
Perelomov and Popov. Using their formulas we get the
eigenvalues for tr U* of SO(2v) (see Ref. 3):

2y 2v

TrU* =Y 3 (@), (8.1)
j=1l=1
where
ajk - (lj +a)6jk + (B/z)(l +€j)5j,2v——k+l —ojk,
(8.2)
1, ifk>j,
k= 8.3
O {0, otherwise, (8.3)
1, if j<v,
j = 8.4
6’ [— 1, ifv<j<2v, (84
1 I,
L= [m’ ” . (8.5)
— My 1 —Ta_jr1s V<JS2V,
r=ve; —Jj, J<v, (8.6)

and m;, j<v, are the components of the highest weight of the
representation. So the eigenvalues of C, are

¢ =(—=)"Y (@) (8.7)
jk
The eigenvalues for the Pfaffian C’, are given by
¢, =211, (8.8)

With this information we can compute Table II. The for-
mula (8.1) gives eigenvalues of the Casimirs for all represen-
tations of the rotation group. It gives in particular the values
corresponding to the D-representations, i.e., those listed in
Table I. On the other hand the list in Table II contains all
representations in which C, corresponds to one of the 17

TABLE II. Casimirs of irreducible representations of SO(10).

Highest weight C, G, C, C, C;
00000 0 0 0 0 0 *
11114 —% B —wygy upye 113400 *
1441 -} —4 up s ugyes 113400 *
11100 —42 1050 —45402 2173290 0
33444 — g g Asgale 178 200
3341 -4 W4 —uipo asgua 178200
21111 — 722304 — 146016 12644064 552960
2111 —1  —722304 — 146016 12644064 — 552960
22000 — 722880 — 221472 17892000 0
33144 — P s g Jeianos 210600
$344 -4 - —oupes wemes — 210600
33333 — 1§ log0s  —1ogges 22909000 1247400 *
3333 -3 g s —lges  Zageos — 1247400 *
22111 —902970 — 176490 12858570 691200
2211 —1  —902970 — 176490 12858570 — 691200
31100 —90 4410 — 429930 48865770 0
IEEEE) — 1P g — 00 MI0pIe 189 000
1441 -1 — 1§ 43045 _ 20638909 10708941285  — [89 000
33344 — 1 agn By JLaggyey 294 840
3334 -4 g WU —awpw AnglssT 204 840
40000 —96 7296 — 961 152 136989 312 0
31110 —96 4416 — 411072 46813632 0
22200 —96 3264 — 191040 12098 112 0
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roots of (7.8). The lists of representations in the two tables
are the same.

In eight cases ( j<3,/>13) the value of C, alone is suffi-
cient to label the representation. It is also interesting to note
that the Casimirs of some of the other representations in
Table I (the starred representations) are correctly given by
the simple formulas (6.9) of Sec. VI.

A straightforward method for extracting the irreducible
parts involves the construction of projection operators be-
longing to the different Casimirs.* The operator

I (C—¢;)

I (e —¢p)

(8.9)
projects out the eigenvalue ¢, of C. These operators clearly
satisfy

A(C)A(C) = 8,A,(C).

Construction of these operators becomes possible with the
aid of the information contained in Table II. One may then,
in principle, project out the irreducible superfields as fol-
lows:

5
W (€1, sC2m, 1C€3m, 1Cam, 1€5m, ) = H A, (C)HY, (8.10)
i=1
where V¥ is the general superfield.

Since some representations appear twice, the above pro-
cedure will not completely separate all the irreducible repre-
sentations. To remove the remaining degeneracy we need
another operator, which is conveniently furnished by DD. In

TABLE III. Projection operators for irreducible parts of the scalar super-
field.

Superweights  Projection operators
00000 A, (DD)
141 £ AL (DD)
11100 A, ,,(DD)
331 FL AL(DD)
= . C,— 2880
2111 F1 A, (DD)—2—="_
¥ 23 PD) o — 2880
22000 A, (Dp) 2=B%
2880 — 2304
s o
3133 F3 Ate(DD)w
—
334 F4 Aiﬁ(DD)w
31100 A, (DD -2=279
4410 — 2970
= C,—4410
2211 F1 A,,(DD)—=2-"_
+ T YTy
— G
3331 Fi AtZ(DD)@
e
i 4] ALOD
22200 Ao (BD) —LC2=1296)(C; — 4416)
(3264 — 7296) (3264 — 4416)
3110 Ao (D) —{C=T296)(C, — 3264)
(4416 — 7296) (4416 — 3264)
40000 Ao (DD) G2 H16)(C, — 3264)

(7296 — 4416) (7296 — 3264)

Here A, (DD) satisfies DDA, (DD) = AMA, (DD).
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this case the procedure is not so complicated as it may appear
since there is very little degeneracy left after the eigenvalue
of DD is chosen. Consequently the additional projection op-
erators that are needed have very few factors. The full set of
27 projection operators is listed in Table III.

"In spite of this simplification the method of projection
operators does not seem the most useful approach here. In-
stead we adopt a different procedure based on the observa-
tion that C, depends only on the operator DD. Therefore one
obtains the eigenstates of C, by solving the following differ-
ential equation:

DDy, =€, ¢,. (8.11)

The eigenvalues of DD have already been found and are
equally spaced as for a harmonic oscillator. Since the forms
of D, ,D_, and DD also resemble the lifting and lowering
operators and the Hamiltonian of the harmonic oscillator, it
is natural to consider the “Grassmann Gaussian”

P = 190 — O Ca” (8.12)

the analog of the lowest state of the oscillator. In the next
section we pursue this approach by finding all solutions of
(8.11) with the aid of the ansatz

P(x,0) = PF(x). (8.13)

IX. IRREDUCIBLE SUPERFIELDS

The reducible scalar superfield in 11-dimensional Ka-

luza—Klein space may be written as
32
¢(0’x) = z ea' aee
m=0

where 6 ¢ is the 32-component anticommuting spinor appro-
priate to a 10- or 11-dimensional spaceand F,, .., isacom-
pletely antisymmetric multispinor. The space of completely
antisymmetric multispinors has dimensionality

i (32)=232
m=0 m

and is highly reducible.
To obtain its irreducible subspaces let us consider, as
suggested in (8.13),

0°F,, .o (x), (9.1)

P(x,0) = ®F(x). 9.2)
Then

DDY(x,0) = [644 — BO(4L2 —  P2) | PF (x).
If we impose

P =164 "F=M'F, (9.3)

A= +M/4 (9.4)
then

DDy, =DDe*™M™MPF— 1 16M ¢, (9.5)
and

Cl'l’i (x,8) =0. (9.6)

According to Table II, (9.6) implies that all other Casi-
mirs also vanish and that ¢, and ¢_ each belong to one of
the irreducible representations with highest weight
[00000] = [0].
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Since Q and D anticommute, Q% -.Q%e* (M/4%
XF,, .. o (x) correspond to the same DD eigenvalue as ¢ 4 if
(P*—=M?*F, ., (x)=0.

But

+ (M/4)66 __
Qre =0.

(9.7)

So we get the two irreducible parts
16

P, 0=3 0% -

j=o

16 -
Q_0=Y 0% QY e MMFR ey (X), (9.8) _
j=0

Q% eMWHE, | (x), (98),

which are the most general solutions, respectively, to the
equations

DDO o, = 16MD _ (), (9.9,
DD® _ 5, = — 16M® _ 4. (9.9)_

Herethe F, . a (x) are completely antisymmetric mul-
tispinors satisfying

PPF, .a(x) =M’F, ., (x),

and the indices a;, now have only 16 possible values.

The above solutions can also be generated by applying
supersymmetry transformations to ¢ , . The number of com-
ponentsin @, ,,is 2. This is of course, the dimensionality
of the irreducible representation [0]. The original reducible
representation, on the other hand, is of much greater dimen-
sionality, namely 22,

To obtain the remaining eigenstates of DD we need the
lifting and lowering operators. These turn out to be the posi-
tive and negative “energy” projections of D

a 1 9 _1
D, =A '-T——Pa)=A (—_ —Mo).
* i'(ae 2 55 T3

(9.11)

(9.10)

To establish this point we compute

DDD*=D°DD + [DD,D*] = D°DD + 28°,D".
Multiplying by A, we find

DDD, =D_DD+2MD . (9.12)
Then D, raises the eigenvaluesby + 2M, and of course
i

we have

D, ex Mm% g, (9.13)

The expression
16

S Q% Q%I DP DT eMIFE, 5.5, (X)

=t (9.14)
is the most general solution to the equation

DD® = (16 — 2m)M®, m=0,12,.,16,  (9.15)

and the expression
16

j;o Q* «.Q% D% .. Dﬁ"e‘ (1‘1/4)561;:7‘I I x)
(9.16)

solves the equation
DD® = (— 16+ 2m)M® m=0,1,2,.,16. (9.17)

Only one chain must be considered since the other one is
redundant. The dimensions of one chain add up to

16 16
216( ) —_ 232’
,;0 m

as it should.

As has already been pointed out, the values
m =0,1,2,3,13,14,15,16 give irreducible superfields. The
others need further projection.

X. SIMPLIFIED REPRESENTATIONS

Equation (8.11) shows that there is a factorization that
separates the x- and -dependent operators in D, . We can
rewrite (9.11) as

Di =iAiei(M/4)bei_eq:(M/4)§a_ (10.1)
a9

Similarly for Q,

0, =ik, ¥ O gxurmi (10.2)

a6
By using these factored representations of D_ and @,
one may simplify the expressions for the superfields given in
the preceding paragraph:

+ _pAQ . a, — (M /4)88 d d (M /4)660
q)m —l/\_"_.},l "A+Ype — e —— ¢
8, b,
¢ 4
SCMAS e Aﬂ'" e~ (M/0Bo d v J (M /480, (M /Y80 (x)
s, —5,, = @y @, - By X

30, 305

P

where we shall define the Grassmann—Hermite polynomials
by

H® " 0m(0) = o — (M/280 __19_. -_L
305| ae&,,,

These are multinomials in the & variables and completely

e(M/2)09_

(10.4)
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16
P a Bim M /406y Yi = ¥p: = Sy
- PN "'Aiypl\ﬂ—'a. "‘A~5m€( YBOEF ¥+ - Ve (9)Fal,,_apﬁl 8, (%),
=0

(10.3)

I
antisymmetric in all indices.
Finally
16 _
&F = (M /480 z HT ot 5m(0)¢7l ey b (x),
p=0
(10.5)
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where the lﬁyl - y,8, - 5,, are Grassmann-Bargmann-Wigner
multispinors with the properties

A g by yyss, =05 (10.6)
Nig Byt s, =0 (10.7)
or alternatively
A g T8 _ () (10.8)
A 738160 _ ) (10.9)
where
YT =gy (C TN e (€ TP,
(10.10)

The ¢ are antisymmetric in the sets [y,--7,] and
[8, - 8,, ] separately. However, only their completely anti-
symmetric projections contribute to @, .

XI. INTEGRALS

The Grassmann-Hermite functions have properties en-
tirely analogous to those of the familiar Hermite functions.
To discuss orthogonality properties one may define a gener-
ating function

gon=3 &My

oy
m=20 !

ety H*7(0)

— o~ (M/2)B6 i 1 ('t'_‘_?__)m oM /2)80 (11.1)
m=0 m! (99
where the ¢, anticommute among themselves and with the

8,, and where

;%z?" ag ’ (11.2)
e(m) = (— )m/Dm=1 (113)
Then
g(0,1) = e~ M/DBOGHE/50) (M /2)80
— o~ (M/2)88,(M/2)(B+D)(0+1) (11.4)
or
g(0,1) = oM/ 21 (1Ls)

Then the orthogonality properties may be established by
consideration of the integral

J=f [ 1e™/D%g(6,1)g(8,5). (11.6)

This integral may be expanded according to (11.1) as
J=3 e(m)e(p) 7

el 5o o §
a, a8, (-
mip! ’
pm

xf [dO 1e M/ % %9y HP ~Pn(8), (11.7)
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and it may also be evaluated according to (11.5) as

J= J [do ]e(M/Z)GGe(M/Z)(Es + tt + 256 + 216)

=e_mgf [d¢]e(M/z>$¢ (11.8)
where ¢ =6 + s + . But

J [d¢]e(M/2)$¢
= 1001 3 < (%) oy
=3 (&) 5 [ @1Cu - Copgrr 579
e€(A)

A2
- (%) (A/2)!

where the usual rules for integration of Grassmann variables
have been used, and Pf(C) is the Pfaffian or square root of
the determinant of C:

Pf(C), (11.9)

Pf(C) = (det C)'/2. (11.10)

Then

J=.g-Mf'(QM2 PEC) (11.11)
2 (A/2)!

To compare with (11.7) we expand (11.11). Then

S =3 EIERV 7 5 5 w5y I

mp m'p‘ o %
. A/2 Pf(C) ( —M)" - _
- (A_;) i Uads) - Uafs)

X(C TP (€N, (11.12)

where

B f [0 1M/ 2o (9) T # ()
(11.13)

There are no terms on the right of (11.12) for which
m3#p. Therefore these functions are orthogonal:

%% P — 0, mep.
Ifm=p,
Ia, o @By B

(11.14)

= A, M mPE(C) (€~ (€~ ™o,
(11.15)
where
_ (= )"e(m)m!
T 2M(A2)
and the indices @ and £ are antisymmetrized separately.
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Xil. LAGRANGIANS
To see how one obtains Lagrangians corresponding to (10.5), consider for instance the invariant @ integral:

I, (x)= J[dﬁ] QI = z !7/,,1 e iy B (x)';y, e VBt v By (x)
q

xf [dO ] eMDHp 2B Pu(g) T 1 On(g),

where

b} \ Y 8, S To
¢a|"'aq;ﬁl B, (x) =i‘l+mA"f‘_al A_;’_an_ﬁl - A—E,..F‘h ey s B (x).

Then
Ly =By (=) "Wy g, (VP70 P (),
q

where
B, =A,M'"*"Pf(C).

As previously remarked, @, is irreducible only if m<3 or m>»13. Let us consider m = 1:
Lx) =3 (—D7*'B, (AT g = A%, A° GF, ., s ()Wl P (x).

q
Up to a complete divergence we can write

Lx)=F (=B, Fyp s (DA™ o AT, A gyt ™% 1)
q

we AV

—a,)

q - .
= — 2 2 (—=D9+ qu+1 (___q_) Fr. v (X)A” (g o A”i—a;_lAiaiATju A728¢a....aqﬁ(x)

g g+1
. 1 \x a - ay
+ 2 (-0t 1Bq+1(—q+—l->Fy' b (X)A™ - A”_van6+B B )

q
< B ( q F' ( )(AZ )" A2 ¥
= — — s (X " 1 vee " it :
X (Az_ )7’1+lﬂi+l (Az_ )Yqﬁq (PZ - MZ)&BBJ(PZ _ M2)57’jaFB. -..Bj;a(x)
1 s B
+ ZBqH(m)F,, s (AL )Tig o (A2 )17 (A2 )2, FP %% (x).
q
If we use the irreducibility condition at this point, we just get

1

(12.1)

(12.2)

(12.3)

(12.4)

(12.5)

I(x)= ZB‘H"I (———) FY. b (,x)A"’_lmI A7’_qan5+BFa. ...aq‘ﬁ(x).
q

q+1

One can of course redefine fields in many ways to give a
different form to the Lagrangian. For instance, with

'Zal aq;ﬂ = Aa— B/—fa, aq;é we get s1mply
B

I ( x) — g+ 1

=2

after using the irreducibility condition.

a, - ags

;al a.,;BAqr sX ’

(12.6)

Xill. REMARKS

In a more satisfactory formulation,® one writes the La-
grangian . = f[d@]PIIP, where I1 is a projection opera-
tor such that the irreducibility conditions are derived from
the superfield equation of motion, rather than being imposed
by hand. In that way, the dimensions of I are dictated by the
leading physical field, which we have not selected here, and
the fact that the dimensions of .# are (length) —*.
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There are two ways of introducing interactions into this
noninteracting Lagrangian. In the first method the group is
regarded as global or rigid. One may then form invariant
interactions from products of the irreducible superfields that
we have found. The simplest of these models correspond to
nonlinear theories in which the interaction is of fourth de-
gree. These cases are analogs of the nonlinear scalar and
spinor fields.

If there are interaction terms, then of course the individ-
ual fields no longer satisfy the Klein—-Gordon equation and
by Sec. IX these superfields are no longer irreducible. How-
ever the field algebra still will close under supersymmetry
transformations so that the formulation of the interacting
theory is still off shell.

In the second and more fundamental approach to inter-
actions, the group is regarded as local and the interactions
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TABLE IV. Coefficients for 11 dimensions in Eq. (A8).

k
c® X 0 1 2

3 4 5 G, E,
0 1 11 — 110 — 990 7920 55440 1024 - 32
1 1 -9 —-70 450 2160 — 5040 0 32
2 1 7 - 38 - 126 — 144 — 5040 0 32
3 1 -5 — 14 — 30 — 528 1680 0 —32
4 1 3 2 66 — 144 1680 0 - 32
5 1 -1 10 — 30 240 — 1200 0 32
5 5
Here G, = z E(k) C¥ ad E, =3 ~—— =) ) cP.

“o k!

appear via the displacement field or connection. To imple-
ment this approach one gauges the graded Lie algebra.

Although the analysis of massive representations given
in this paper is of interest in itself, it was intended to be
preliminary to an attack on the massless case so that the
transition to local symmetries could be effected in the con-
ventional manner.

In descending to space-time there are various possibili-
ties as illustrated by the different versions of Cremmer and
Julia® and of de Wit and Nicolai’ and the discussion of Ref. 1.
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APPENDIX A: THE DIRAC ALGEBRA

The Dirac algebra in # dimensions is formed by 2!*/?!
X 2121 matrices satisfying

{r,Tp}=29, AB=01,.n—1,
where

N5 = diag( + — - —).

We can define totally antisymmetric I'-tensors by
Capn, =804 n, T — (=T, Tyy )

In odd dimensions the I'-tensors of rank <[n/2] are
sufficient to span the 2" x 2!"/?) matrix space since

L,y =al [®>=(—-

in odd dimensions.
From (A1) and (A2) we can derive formulas for all
commutators and anticommutators of I"-tensors:

(AD)

(A2)

)] (A3)

a . m! (Zk)
= e Y_
Z( ) (m=2)\2%

M, szI*Myw 1 Max]
XCS[N, 6”21 Ny 1Ny ]?

with @ = Min{k,[m/2]}, (A4)
5{1-\M| My 4 1, FN, oyt 1}
_§ oy Gprb (%)
<o 2@-HN\Y+1
[N. v 61;,{3:: FM2}+2~..Mzk+l] NoyesNapss]?
a= Min{k,p}, (AS)
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=3 (_)f+1__ﬂ_( 2k )
% (m—2—11\2j+1

SiMy %+ 1M+ 2 7 M)
[N. 6M r Nyjr2 Ny ]?

2+|

a=M1n{k— L[(m—1)/21}, (A6)
i [ FM. My l’FN, Wy ]
a ) 2 1 2k + 1
_— z (— )1_(.22_( . )
<o 2p+1-2D1\ %
X&{%l vee 65;’ FMZH' v Mok l]NZH-Z ~Nyp et I
a = Min(k,p). (A7)

These formulas can be used to decompose products of
I'-tensors (or D-tensors as in Sec. VII).

Constants very useful in calculations are C {* defined
by

Ty .als.a " " =C®T; .5 (A8)
They satisfy the recursion relations
CcC®o — (— )k—lc(k—l)c(l)
+ k=D —k+2)CE=?, k>1,
CP=1, CJ=(—-)"(n—2m), (A9)

C§=(—)kme- ”k!(',:) = e(k)k!(Z). (A10)

In 11 dimensions we have the results in Table IV.

APPENDIX B: FIERZ REARRANGEMENTS

In general, if Q,, Q,, @5 and Q, are Majorana spinors,
and

{010 =27,
then one has the identity

0,MQ,0,NQ,
- _ % > M HBMONQG:0,0,

(B1)

o 3 A/)QMO,NQ, TH[0,(2%C |

L S ADA (HBMON£)CO,Q,

>

+ —A— 3 A())QMO;N(2£5,)CO,Q,, (B2)
J
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where {0, } is an orthogonal basis in the space of A X A ma- (CO)HT=A"(j)CO,. (B4)

trices, satisfying For our purposes all the spinors are the same (namely
D) and the basis is given by I'-tensors. We have then in 11
Tr[0,0;] = AA( /)6, (B3)  dimensions:
J
_ — 1 3 6(_]) — B, - B, —_ =
DMDDND = ~— > L DMT™ " NDDT, .. 5, D — DMPND
=0 J
5
- % T [( — Y +€(/)|DMT* " PNFT;, ., D, (BS)

where the 1/j1 factors are to compensate overcounting. Since D is a Majorana spinor satisfying

{De,DF} = — (PC~H)*,

we have
DT, .,D=0, forj=25 (B6)
Dr,p= —16P,. (B7)

Now we can “Fierz”:
1

DT, DDT*#D = —— s 6(11 ) DPT,, T " T*2PDDT, .. . D
=0 J
B AB 13 €() R C, - Ci~AB
—DPT ,PT°PD— — % Tle'l“ﬂ,r TA2PPT, ..cD. (B8)
i=o J

We have made use of

_ L 3 €D pa-gpaap =0, if k#0
32j [ j'

(see G, in Appendix A).
After a little algebra one arrives at the equation

C(Z) - _
(1 + 3’2 )DI’I‘ABDDI‘"’PD
(2) 1

0 2/ N\2 (2) (
P*(DD 8P C}
A R

)j C (Z)C (I))

o J!
C(z) Cin _ _ C(z) 1
Ty ( 3 Dr225DDT, 5,80 + m Dr®-5ppry . a‘D) TR — Dpr*: B*"’DDI“B 5,8, PD. (B9)
In the same way one can obtain the equation
C & B,B,B.
(1 + 3'16)DPF 233)77) g 5,5, PD
= _C(()3) PZ(ED)2+8P (C(S) 1 z (— )JC(;;)C(J))
32 16 ' jl
P2 C(3) C(3) C(3) _ _
Y)Y ( 3l Dr#5:ppry , 5 D + 2 Dr**DDT,...5 D) + 32 DPT ,,DDT*2PD. (B10)
With these two equations we can solve DFT ,; DDT*?PD in terms of (DD)?, P? DI'**5D DTy, D, and DI'® 2D
DFB, .. B‘D.
We can continue this process with
Dr” " *DDTy, .. 5 D
= — 1 E 6(]) C(k)DFA‘ AJDDF D_Cgk)EPD_ 1 2 (_)JC""CU’DPD (B11)

32]0_]1 3210_].

For k = 3,4 we get two equations that allow us to solve for DI'*#:%:D DT, , .5,D and DI®~2D DIy .5 D in
terms of (DD)? and P2. After the necessary algebra one gets
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Field contents for scalar superfields in different numbers of dimensions are tabulated. Tables of
field contents for some irreducible superfields included in the scalar superfield in 11 dimensions

are also given.

I. INTRODUCTION

The formulation of supersymmetric Kaluza—Klein the-
ories would in principle demand knowledge of the contents
of general superfields both in terms of irreducible superfields
and of ordinary fields. Extensive tables of field contents for
the scalar superfield in various numbers of dimensions have

TABLE 1. D = 8 scalar superfield.

8 sector SO(7,1) representations

8° [0]

o i

9+ g [111),[1]

9(-0—)3 [iii _il

N (333 —41, (33440, 443 -4

gi+M [2L0111=1]

g+r gt [211-1}[21},[111],[1]

g2 gi-n [22],[211),[21,[1111],
[111-1],[11],[0]

0(+)5 [iii—”

oM (334 —14], [334 —1)- [334 —4)s
[3441). 334 4]

or o2 [333 —1]. [3444]: [333 40

- (3314121834 1 a4

AN Al [211—1),[21L,[111),[1]

gngi-n2 [31]),[221—1],2[211],[2]
[111-1],2[11]

§+n gt-» [311),{31,[221],(2111],
[211—1],2[21},2[111],[1]

0(+)7 [Hii]

60 (334 —1], [3344), 1344 -4

o3z (334 —1], [3334], [333 - 4]
[3343].2[344 — 40, (14441

grie-? [3343) [333 —4), [3344)
2331 —1]. [3344).2[34) 1),

. ?glﬂ]’ (343 -41

8l+)1 9(—) [1 1 1],[1]

@'+ gl [22),[211},[2),[1111],
[111-1],[11],[0]

g5 gi-n [311],[3),[221],[2111],
[211-1],2[(21],2[111],[1]

fr g [41,{3111},1311 —1],131],

(222],[22],3[211],2{2],
(1111L[111-1][11}[0]

The box 6+’ 6(—>" gives the SO(7,1) representations of the field
W.,. ..a.s-5,(x) in the expansion

q,(x,ou),g(—))
8
= 3 0ng g B g Ty ().

a
mn=0
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been given in Ref. 1. Unfortunately some of those tables con-
tain errors and need revision while others must be complet-
ed. In Sec. II we give the correct results for the tables that
need to be changed.

In Ref. 2 the analysis of the massive irreducible repre-
sentations of the super-Poincaré algebra in higher dimen-
sions was undertaken and a complete decomposition of the
scalar superfield in 11 dimensions in its irreducible compo-
nents was achieved. In Sec. ITI we will reproduce the table of
these irreducible components and give the field content for
the three smallest ones. What we search for are the represen-
tations corresponding to the massive counterpart of the su-
pergravity multiplet in 11 dimensions,®> which indeed ap-
pears later in Table VII.

Il. FIELD CONTENTS OF SCALAR SUPERFIELDS

In the first three tables we follow the structure of Ref. 1,
listing the field content as representations of SO(d — 1,1)
for each @ sector. We list the irreducible representations by
their highest weight vectors, omitting the zero components.

Table I shows the field content of the scalar superfield in
eight dimensions. We list only the sectors 8 (+’m @ (—"
with m>n, 6% and 8~ being the two Weyl projections
of 6. The terms 8 ¢ *°" § ¢ ~ ™ can be obtained from 6 ¢ * ™
6¢~’" by mirror conjugation' (the representation A

= [AA, =+ 4, _, —A,] is the mirror-conjugated represen-
tation of the irreducible representation A
=[A Ay A,_4,] of SO(2p)). We do not list the cases

p—1

TABLE II. D = 9 scalar superfield.

8 sector SO(8,1) representations

6° (0]

o (4114]

92 [11r1,{11]

N [3334) [3334)

o4 (22),[2111),[21),[2},[1111]

6° [3343], [3334], [3333], [3344), [3444)

9 [311),[31L,[2211),[21111,[211],[21),
(111],[11]

6’ [3433), [33314], [3343), [33413),
[3334], [3343), [3443]), 344 4)

98 (4),[3111},[311),[3),[222],[221],[22],

(21113,[211],[2L,[11110,{111),[1),[0]

Thebox & shows the SO(8,1) representations of the field #,, .., (x) inthe
expansion

16
Px) =Y 0% 8"W, ,(x).

n=0
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TABLE III. D = 11 scalar superfield.

TABLE I11. (Continued.)

0 sector

SO(10,1) representations an

9°
6

92
63
a4
95

06

97

08

09

011

[0}

(43444]

[1111],[111] 4+6°

[33343) [33444]) +6
f222],(22111),[221],[22),{21111] + 6?2
[33344): [33444] [33333), [33344),
[33334). [33323] +6°
[3311],[331],[32211],[32111],
[3211],{321],[3111],[{311],[22222],
[22211],[22111] +6*

(331341, [33334], [33343): [33444),
[33333), [33344), [33334): [34444),
[33333] (33333) [33334). [33444],
[31331), [33344) +6°
[44],[43111],[4311],[43],[4222], »
[4221],[422],f42111),[4211],]42], 4
[411111,{4111],[41],[4],[33221],
[33211],[33111],[3311],[32221),
{32221,[32211],[3221),[322],[32111),
[3211],[31111],[3111],[2222},[2221],

[222] +6°¢

[33334). [34334), [34334). [33434),

(333331 [33344]. [33344]. [33344),

[33333] [33334): [33343) [33444),

[33333), [33344], [34443).2[34431)

[33334), [3434), [33433)-2[34434),

[333314), [33414) [34444). [33443):

[33333]. [33344], (333430, [33344]

[33331), [31344] + 67 0
[$311],[531],[52211],{52111],[5211],
[521],{5111),[511],{44111],[43221],
[4322],[43211],[4321],{43111],
[4311}),[431],[42221],[4222],2(42211],
[4221),2[42111),[4211],{421],[41111],
[4111],[411),[3333],[3332],[3331],
[333],[33221],[3322],[33211)},[3321],
[3311],{331],[32221],[3222],2[32211],
[32211,[32111],{3211],[321],[3111],
[311],[22211],[22111] + 68

[¥3344], [¥4344], [¥3333): [H3344)

[¥3144]. [33343), [33344], [33344),

(33334 [33433), 2(34344].2(33444),

[33443], [33343), [33331).2[33343),

[33341), [33334], [33343): [(33344], .
[33334], [33334), (33434), [34333): 6
2[34334), [33344). [33333).2(34334):
2[33344) [34444]: [33434]. (33444),
2[33344], [34341), [33433). (3343).
[33333), [33334): [33333), [33444),
[33333], [33344), [33443). [33333] +0°
[622),[62111),[621],[62],[61111],
[53211],[5321),[53111},[5311],
[52222},[52221),[52211],[5221]},
[522],2[52111],[5211],[521],[52],

[¥1314), [¥1444], [¥4141). [¥4334),
(¥1331], [¥3344], [¥3444). [¥3434),
[¥1333]), [#3344], [¥1144], [33444],
(33344), [31431), [33343), [34341)
[33314],2[33344]). [24444].2[33334),
2[33344], [33344), [33434). [34344),
[33313). (33444], (33334), [38334),
(23334]. [33341), [13333], [33341)
[311344], [33343), [33443), [33434),
2(11141), [33343]),2[33334]. 2[33344]),
(33444], [13233], [33334], [33343],
(33444]). [34333) [34343):(344344)
[33333), [33344), [13344) [33444),
[33334], [33331], [33341), [33444]

[33341], [33343) + 6"
[7111},[711),[62211],[6221],{62111],
[6211],[6111],[611],[5331],{533],
[53221],(53211},[5321),[532L,[5311],
[531],[52221),2[52211},[5221],
[S2111),{5211],[5111),[511],
[44311],[44211),[44111],[43322],
[43311],[4331],[433],[43222],
[43221],2[43211],[4321],[432],
[43111],[4311],[431],[]42221],
2[42211],[4221],[422],[4111],[411],
[33322],[3331],[333],[33222],
[33221],[33211},[3321]1,[332],[3311],
[3311,[32221],[3222},[32211],[3221],
[322],03111),{311],[2222],[2221],
[222),[21101),[2110,[t111),[111) 48"
[¥1441], [¥3334]), [¥4344) [R3441)
[Yi331]. [4344) [V4141) [¥3448)
[#1334], [#1334]), [%4404).(33244),
[33333], [33344), [33343] [33344)
[33444), [33343), [33334): [33444),
(333331, [33434), [33344], [34434);
[33334], [34341), [31234] [33344)
[33343], [33344], [33343], [33444],
(374441, [33333), [33333), [33434),
[23344), (33343]. [33344): (33114):
[33334]. [34344], [34343). [33341),
[33343), [33334), [33344]), [33434),
[33344], [34444]), [34344) [33344)
[33434], (B4di) + 07
[81,[71111],(71,16222},[6221},[622],
[61111],[6],[53311),[53211],{53111],
[5222],{5221],[522),[51111],[5],[444],
[443],[44222],[442],[441],[44],
[43311],[43222],[143211},[43111],
[42222],[4222],[4221],[422],[41111],
[41,033333],[33311],[33211],[33111],
{3222],[3221],[322],[31111},[3},
[2222),(2221],[222],[21111],[2],
[11111],[1),[0] +6*

[S1111],]4422],[4421],{442],[43321],
f43311),[43221],[4322],2[43211],
2[4321],[432],[43111},[4311],[42222],
[42221],{4222],[42211],2[4221],

expansion

[41111),[33321],[333111,{33221],
2{33211),[3321],[33111),[3311],
(32222),[32221),[32211],{3221],
[(322),[32111],[321],{32],[31111},
[22222],[22221],{222],[22111],[221],
[22],[21111] +8%

1608 J. Math, Phys., Vol. 27, No. 6, June 1986

The box 6" lists the SO(10,1) representations of the field W,

a, (%) inthe

®(x,0) = i 00" W, . (x).
2[422),2[42111],14211},[421],{42], n=0
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TABLE 1V. Irreducible superfields included in the scalar superfield in 11
dimensions.

j N_

0 [00000]

1 (4143 —14]

2 [11100]

3 [33144]

4 [22000} @ [21111]

5 [33114] e [33331]

6 [31100] ® [22111]

7 (3133 —4] e [33344]

8 [40000]1 ® [31110] & [22200]
9 [11444] @ 3431 1]
10 [31100] @ [2211—1]
1 (3341 —14] o [3343 —i]
12 [22000] ® [2111—1]
13 [333) -]

14 [11100]

15 (434141

16 [00000}

TABLE V. Irreducible superfield {4 4141].

m + n> 8 since @ (¥*+/ = @ +)*~J representation wise.

Table I1, in similar fashion, lists the SO(8,1) representa-
tions contained in the nine-dimensional scalar superfield,
where we stop at 88, since for #® * " we have the same repre-
sentations as for 8% —". Table III gives the results for the
scalar superfield in d = 11, where we need to go only up to
6'°. In this table, the representations appearing in the "
sector appear again in the 8” * 2 sector, for n<14. In order to
save space, we limit ourselves to list the new representations
in 8" * 2 and simply write + 6" at the end to indicate the set
of representations in the 6" sector.

In ten dimensions one can have “chiral” ®(x,0*’) and
“antichiral” ®(x,8‘") superfields, whose contents have
been correctly reported in Ref. 1. The content of the full
scalar superfield ®(x,6) can be obtained straightforwardly*
by reducing the SO(10,1) representations given in Table III
to SO(9,1) and will not be done here.

ll. STRUCTURE OF THE SCALAR SUPERFIELD IN 11
DIMENSIONS

Now we briefly mention some facts about the super-
Poincaré algebraind dimensions SP,. This algebra contains

TABLE VI Irreducible superfield [} 1} — }].

Factor SO(10) representations

2[0] 2[44441]

[$334 —41 [1111],[11),(0]
(14411 [r1111],[111],[1]
2000 2[33345),2(3344 — 4], 2[344 4] 208444 — 4]
(3344 —14] [2211],{22],(21 11 — 1}, [211),[1 20 10,00 1)
[333441] [22111},[221L,[2111,[21),(t1111],
[111]
2(22]  2[33441).2[334) —4).2[33444]
(211011 [33334], [33444): [34444]. [33434),
_ (33144]
211111 [3333 —4] [3344 —4), [3333 —3), 3434 — 1)
[31434 4]
[ggggg] [32111),[321],[3111)],[31],[2211],[22],
[21111],[211]
[3334 — 1] [3211),[32),[3111~-1),[311},[2211—1],
[221],[2111],[21]
[ggggg] [22222),[22211),]21111]
(3333 —13] {2222—-1),{2211-1],[1111-1]
203010 2(33344],2[3344 — 3] 2[3 4444, 2[3434 — 1),
2[33444).2[3441 4]
(22111 [33343]. [33343), [33334), [33444],
[31333) [33344]
(221111 [3333 4], [3334 -4 [3343 —3), [3334 -4}
(3333 —3]. [331) -]
[33444] [41111)[411][4),[3111),[31]
(3443 —4] [4111][41L[31 11 —1],[311],(3]
[ggggg] [32211],[322],[3211),{31111},[311],
{2221],[22111},[221],[2111]
[3333 —3] [3221L,[3211—1L,[321),{3111},[2221—1],

[222),[2211],]2111—1),[211]
(4] [33443], [3444 -]

BU11} [33334] (3333 —3) [33444). [3444 — 4]
(3333 — 1], [31344]), [3344 —1)s [34444]
(222] [32343), [3334 — 4] [33344): [3344 4]

Factor SO(10) representations

2[0] 2[4334 —141

[34343)  [1111),{11),[0]
(4333 —41 [1111=1),[111],[1]

200111 2[3333 —41.2[33444],2[344) —1]),2003444)
[33434]) [22110,[22),[211 11,211,101 1),[1 1]
[3343 —3] f2211-1),[221),[2101,[21),[1111 1],

[111]
2[22]  2{3343 —4).2(23441). 23441 4]
(211111 [§333 —3), [4334 —3]. [3443 —14). [333% —14),
(3331 4]
(21001 [33334]. [33443) [33344), [34344),
[33344]
(3333 —4) [3211-1L,[321),[3111),[31],[2211),[22],
[2111-1},{211]
[33434) [3211),[32),[31111),[311),[22111]),
[221],{2111],[21]
[3333 —3] [2222--2],[2221—-1],[2111—1]
[33333] [22221),[22111),[11111]
203111 2[3334 —1].2[33444).2[304) — 1], 2[§4431),
2[3344 —4).2[33444]
(221111 [$343 —3), [3334 —4), [3333 —3). 3331 —14],
(3333 —3]. [3334 - 4]
(221111 [34331], [33333]) [34334), [33334);
[33331], [33144]
(3333 —4] [4111—1][411},[4],[3111},(31]
[33343] [4111),[41L,[31111],[311],[3]
[3334 —1] [(3221-1],[322),{3211),[3111—1],[311],
[2221],[2211-1),[221],[2111]
[$3334] [3221L[32111],[321),(3111),[22211],

(222L,[2211),[21111),[211]
4 (3334 —14]. [34444]

(31011 [3343 — 4] [33444) [3343 — 4], (33444,
(33234]). [3334 — 4], [33444]), [3434 —4)
[222] (3331 —4). [33343), [3334 —4). [34344]

1609 J. Math. Phys., Vol. 27, No. 6, June 1986
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TABLE VII. Irreducible superfield [1 1 1].

TABLE VIL. (Continued.)

Factor SO(10) representations

2[0] 2[111]
(344431 [33331), [3344 —4), [34444]). B44s 4]
(3344 =31 [3334 —4), [33444], 3431 —14]. [44444)
2111)  2(222),2(2211),2{22],2[21111],2[2111 1],
2[211],2(2],4[1111},2[11],2[0]
[33444)  [33244), [3343 —4], [33334], [3334 — 4],
2[33343] [3433 — 3] [33333) [3333 — 1],
2[33344),2[334% — 4], 2[34444], (3344 - 4]
[3334 — 40 [33443) [3333 — 4], [13334]
2(3334 — 11, [33444], [3333 3] [3338):
2[3334 —40,2[33444]. 2(3444 — 4], B4444)
2[3311,2[32111,2[32],2[311],2[22111],
202211 —1],2[221],2(2111],2[211,2[111]
[32211],[3211],{31111},[311],
[22221],[2221),2[22111],(221],
22111,[21),[11111),[111]
[3221—1],[3211],[3111~1],[311],
[2222-1],[2221),2[2211—1],{221],
2[2111],[21],[1111—1],[111]

[33334], (3344 —4], [33431) [3334 — 1)
2[33443], [3444 —1], [33433), [344) — 4]
2[33344], [33334], 3431 — 4], 3[34344],
3[3344 41, 2{34434], [31434). [3433 — 1)
2[33444], [3144 4]

(3334 — 1] [33444], [3343 — 1), [33444)
2[3344 — 4], [34444], [3433 — 4], [11111),
2[3344 -1 (3333 =30, [33334]. 33434 — 4]
3[33044):2(3445 —4])- 3234 — 4], [33344),
2[3344 4], [34444]

[33333]) [33344): [33323) [33344],

(13331]; [33134]

(3332 —1): [3344 — 4], [3333 —3), [313 4],
(3333 —1] [3344 4]

(3334 ~1]

2[22]

[21111]

[2111-1]

[33411]
(3341 -]

[33331]
(3333 -3l

2311
B 2(411],2[4],2[3221),2[32111],2[3211—1],
4[321],6[3111],4[311,2[222],2[2211],
2[22],2[211111,2[2111—1],2[211],2[2]
[33211),[3311),[32221],[3221],
2[32111],[321],[3111],[22222],
[2222},2(22211],[222],2[2211],(22],
2[21111],[211],[1111]
[(3321—11,[3311],[3222—1),[3221],
2(3211—1],[3 21],(3111},[2222-2],
[2222],2[2221 —1],[222],2[2211],[22],
22111 —1L[211],[1111]

[33334], [33444 —1], [34434] [33344)
[3334 —3].2[33444]. 2[3444 — 1), [33344)
(3344 —4])- [31444]

[3331 — 4], [33434), [3444 —4), [3443 — 1)
[33344]-2[3341 —3).2[34344]. 3434 — 1)
[33341], [3344 —1]

[33344), [32334), (3334 —14)- [33444)
[33233). (3333 —1],2[33334), [3344 -4,
[33341), [332334): [3333 —4). [34343),
(3333 —1).3[34344], [3344 — 1), 3[34344)
3[3344 — 41, 3[33441]. [3444 4], [34344],
[3333 —3].2[32344], [1334 — 1), [33444]
(3333 —4]- [3333 — 1], [33444] (3344 — 1)
1333 —3] [33334). 2[3334 — 4] [33444)
[3448 =41, (3333 — 4], [33348]. [3328 —3)
[33134])-3(3334 — 4], [33434), 33343 — 1)
3[33344),3[3345 —4), [34444). [3334 —4]
[33334]),2[434) —4), [33444), [3444 1]

[22111]

[2211—-1]

[34134]

(3131 —1]

[33344]

[3331 —4)

2(422],2[4211],2[42],2[41111],2[4111—1],

1610 J. Math. Phys., Vol. 27, No. 6, June 1986

(4] [511],[4111],[41],[311]
[3111] [4221],[42111],[4211=1],[421],2[4111],
[411,[32221,[322111,[3221-1],[322],
3(32111,[32],2[31111],2[3111~1],3[311],
(31,[22210,[22111),[2211—1],[221],
2[2111],[21]
(333],{3321],[331],(32211],(3221 1],
(322),[32111,[311],2[2221],[22111],
[2211—1],[221},[2111],[111]

[222]

the generators of the Poincaré group as well as a fermionic
generator Q satisfying the Majorana condition. The square
of the momentum P? is a Casimir operator for this algebra
and its eigenvalue M ? partially characterizes the representa-
tions. When M 2#0 a complete set of Casimirs can be found
for the algebra, the remaining ones corresponding to Casi-
mirs of SO(d — 1), which is the “little algebra” for SP,; (see
Ref. 2).

Therefore the massive (M >> 0) irreducible representa-
tions of SP,; are characterized by M and some SO(d — 1)
irreducible representation. The highest weight describing
this SO(d — 1) representation is what we call superweight.>

The eigenvalues of the Casimir operators, given in the
form demanded by the scalar superfield, give us the irreduci-
ble superfields included in the former. The corresponding
superweights can be obtained alternatively by computing to-
tally antisymmetric Kronecker powers® of either of the two
basic spinorial representations of SO( 10), as thoroughly ex-
plained in Ref. 2.

Thus, in Table IV we display the irreducible superfields
given by their superweights, which are included in the scalar
superfield in 11 dimensions, as successive totally antisymme-
trized Kronecker powers of the spinorial representation
A_=1[4114 —1] of SO(10).

Each of these irreducible superfields contains a multi-
tude of ordinary fields, of course. These ordinary fields are
representations of the Poincaré group whose mass is the
same as the parent superfield and which are further labeled
by the highest weight of some SO(10) irreducible represen-
tation. The set of highest weights included in one given su-
perweight is obtained by performing the Kronecker product
of that superweight with each of the superweights listed in
Table IV. Each product is the Kronecker product of two
SO(10) representations.

Unlike Ref. 1 we favor the technique involving Schur
functions to compute Kronecker products,® which can be
implemented in computer programs.

In Tables V-VII we report the field contents of the irre-
ducible superfields characterized by [14141], [1444 — 1],
and [111] in 11 dimensions. In these tables we list repre-
sentations of the Poincaré group [the mass being omitted,
this means SO(10) representations] rather than SO(10,1)
by giving the result of the Kronecker product of the repre-
sentation under “Factor” with the representation character-
izing the corresponding irreducible superfield. We have to
include under “Factor” all the irreducible representations of
Table IV. From the discussion of the previous paragraph it is
clear that the field content of the representation [0] is al-
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ready listed in Table IV.

The reason to go up to [ 1 1 1] and no further is that the
smaller representations do not contain all three fields [2],
[31414],and [1 1 1] corresponding to the “massive super-
gravity multiplet”; [1 1 1] is the smallest piece containing
[2]. All the bigger irreducible superfields also contain the
full multiplet.

Viewed as representations of SO(10,1), the massive
counterpart of the supergravity multiplet is given again by
[2], [§43444], and [111], which indeed appear in Table
II: {2] inthe **and [§441}] inthe @ aswellasthe 6 7
sector,

This tells us that it may not be necessary to go beyond
the scalar superfield in order to formulate supergravity in 11
dimensions. Even the irreducible pieces that do not contain

1611 J. Math. Phys., Vol. 27, No. 6, June 1986

the massive counterpart of the supergravity multiplet could
contain the supergravity multiplet itself in the limit M >—0.
This remains unexplored so far.

'L. B. Litov, Buig. J. Phys. 11, 141 (1984).

2R. Finkelstein and M. Villasante, UCLA preprint UCLA/84/TEP/13,
1984.

3E. Cremmer, B. Julia, and J. Scherk, Phys. Lett. B 76, 409 (1978).

“A. O. Barut and R. Raczka, Theory of Group Representations and their
Applications (Polish Scientific, Warsaw, 1977), p. 228,

B. G. Wybourne, Classical Groups for Physicists (Wiley, New York,
1974), p. 115. See also, G. R. E. Black and B. G. Wybourne, J. Phys. A 16,
2405 (1983).

P. H. Butler and B. G. Wybourne, J. Phys. (Paris) 30, 655 1969; B. G.
Wybourne, Symmetry Principles in Atomic Spectroscopy (Wiley, New
York, 1970); G. R. E. Black, R. C. King, and B. G. Wybourne, J. Phys. A
16, 1555 (1983).

M. Villagante 1611



Local properties of quantum systems
Boris Leaf

Department of Physics, State University of New York, College at Cortland, Cortland, New York 13045
(Received 28 May 1985; accepted for publication 5 February 1986)

Local properties of a quantum system are defined as the expectation values of its observables in a
microstate of some complete set of commuting observables. An equation for the time evolution of
local properties is obtained for any system whose statistical operator (density matrix) evolves by
unitary transformation in accordance with the von Neumann equation. The formalism is applied
to the example of a system of one particle. In this case the local properties are fields, the time-
evolution equation is an equation of continuity with source terms. For constants of motion the
source terms vanish, giving equations of continuity for the fields. For each scalar field a flux
vector for its transport current is defined. For momentum, a stress tensor is obtained. The effects
on local properties of realization of a latent ensemble of the statistical operator (an entropy-
increasing mechanism recently proposed to explain approach to equilibrium) are also considered,;
a non-negative local entropy production is identified, as well as a discontinuous redistribution of

local properties among microstates.

I. INTRODUCTION

The properties of physical systems, including thermo-
dynamic properties, are ensemble-average values of the cor-
responding observables of the system. An ensemble average
is calculated as the trace of the product of the observable and
the statistical operator that represents the state of the sys-
tem.! Accordingly, these averages give global properties of
the system. We use the term global to describe properties of
the entire system. It is frequently the case, however, that we
are interested in the value of a property, not for the system as
a whole, but for some subsystem within the system, such as a
particular spatial point or set points inside an extended sys-
tem. For example, thermodynamic systems are characteris-
tically subsystems of a global system, the “universe,” with
complementary subsystems, which are the “surroundings.”

In order to discuss properties of subsystems we intro-
duce the concept of a local property, which may be formulat-
ed in the following way. Each observable of the system is an
operator belonging to some complete set of commuting ob-
servables.>* The spectrum of simultaneous eigenvalues of
such a set is nondegenerate; each eigenstate defines a micro-
state of the system for the observables in the complete set.*
By a local property is meant the expectation of an observ-
able, not for the system as a whole, but for an individual
microstate of a complete set of commuting observables; in
particular, the set of coordinate operators of the system
whose microstates constitute the physical space of the sys-
tem.’ The definition of local property is given in (2.6). The
property in a subspace of the system, which comprises a sub-
set of all the microstates of a complete set of commuting
observables, is additive: it is the sum of the local properties at
these microstates in the subspace. The global property is the
sum of local properties at all the microstates of the set of
observables, a sum over all eigenvalues of the spectrum of
these observables. From the defining equation (2.6) of a lo-
cal property, we obtain the equation for its rate of change in
time (2.11).

The main result of this paper is Eq. (2.11), which de-
scribes the rate of change of a local property when the statis-
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tical operator of the system evolves unitarily in accordance
with the von Neumann equation. If the property is globally
conserved, this equation becomes the local conservation law
(2.14), which is satisfied, for example, by the local entropy,
as shown in (2.20).

In Sec. III the formalism is applied to the example of a
system that consists of one particle. Although globally the
system is a particle, locally at a microstate of the coordinate
operator, it is characterized by fields. Each local property is
a field, whose time evolution, derived from (2.11), is the
equation of continuity with source terms (3.7). For each
scalar observable of the one-particle system there is a flux
vector whose divergence appears in (3.7); it specifies the
transport current for that observable. Several examples for
various observables are considered. If the observable is a glo-
bally conserved property, the source terms in (3.7) vanish,
leaving the equation of continuity (3.9) for the conserved
field. Thus an equation of continuity for probability (num-
ber of particles) is obtained in (3.10), which takes the famil-
iar form (3.12) when the statistical operator of the system is
a pure state.® An equation of continuity for the local entropy
is obtained in (3.13). The equation of change for the local
momentum (3.15) permits identification of the stress tensor
(3.16). Equations for local energy, kinetic, potential, and
total, are obtained in (3.17)-(3.19), in which the corre-
sponding flux vectors are readily identifiable.

The time evolution equation (2.11), on which the re-
sults of Secs. II and III are based, applies to systems whose
statistical operators evolve by unitary transformation in ac-
cordance with the von Neumann equation. In unitary trans-
formations the global entropy remains constant. In order to
explain the approach of systems to equilibrium, it was pro-
posed in a recent paper* that the statistical operator changes
sporadically by realizations of latent ensembles, as well as by
isentropic, unitary transformations. Non-negative increases
in global entropy occur when latent ensembles are realized,
increases that vanish when equilibrium is attained. As a final
application of the concept of local properties introduced in
Sec. I1, the effects on local properties resulting from realiza-
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tion of a latent ensemble are considered in Sec. IV. Following
an explanation of terminology and a recapitulation of the
mechanism of realization of latent ensembles (described in
detail in Ref. 4), the attendant changes in local properties
are considered. In general, a discontinuous redistribution of
local values among the microstates occurs, leaving the global
values of observables and entropy unchanged. But, in addi-
tion, non-negative local entropy changes are produced at
each microstate; the sum of these local entropy productions,
taken over the spectrum of microstates, agrees with the glo-
bal entropy increase for the system when a latent ensemble is
realized.

Il. LOCAL PROPERTIES

Consider, in the Schrodinger picture, an observable @,
(with explicit dependence on time #) of a system in a state
specified by statistical operator ib,. The expectation value of

a, for the system at time ¢ is
(a:): ———tl'(ﬁ)‘@,), (21)

According to the von Neumann equation for a system with
Hamiltonian H,,

b,

triv, = 1.

i A
—[H,b,]_ =0, 2.2
ar + ﬁ[ il ] (2.2)
so that
d(@): <3@. | S >
= Lim,0.1.). 2.3
dt ot t ﬁ[ Q] t (2.3)

The expectation (@,), in (2.1) is an average value for the
entire system, a global property; it is the mean valui predict-
ed by theory for the experimental measurement of @, on the
system in state i,. We are interested in predicting the values
of Q, measured on subsystems within the system, such as the
value at a particular spatial point or set of points inside an
extended system in a state i, . For this purpose we now intro-
duce the notion of a local property.

Let % represent a complete commuting set of observa-
bles of the system. Its spectrum of eigenvalues is nondegen-
erate and, for finite systems, discrete.*’” The projector

P(x) = |x)(x), trPx)=1, (2.4)

specifies the microstate of & with eigenvector |x). The com-
pleteness condition is

fﬁ(x) =1,

where f, indicates a spectral summation on the eigenvalues
x. A local property is the expectation value of Q, in a micro-
state P(x), defined to be

0,) (1) =3 tr{P(x) [8,,0,] 1)
= i(xl [ﬁ’n@. 1+ |x).

From the completeness condition (2.5) it follows that

(Qt)t = j(@.) (1,x),

so that the global property is a sum of the local properties on
the entire set of eigenvalues x or X. If the spectral sum in
(2.7) is restricted to a subset of these eigenvalues, then (Q, ),

2.5)

(2.6)

2.7)
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will be the value of the property on the subsystem that com-
prises just this subset of eigenvalues of £. For a subsystem the
value of a property is the sum of local values on the micro-
states that it comprises.

The time evolution of the global property (Q, ), is given
in (2.3). We now derive the equation for the time evolution
of the local property (Q,) (t,x). Using (2.2) and (2.6) we
obtain

3(0,) (%)

R = i tr([H,,,] - [P(x),0.]5)

falp ] )

Note that since [I’},,z’b, ] - =0 if the system is in equilibri-

um, then for an observable Q without explicit time depen-

dence,
EXCNGS)

ot

so that the local property (@ Y (¢,x), as well as the global

property (Q ), in (2.3), is independent of time. For opera-

tors 4 , 3, E’, and 3, it is readily verified that

t([4,81_(CD1,)
=tr([CA1_[D,B],)+tr([DA]_[CB],). (2.10)
Accordingly, from (2.8),

(2.8)

=0, (2.9)

ﬂ%= @)~ ([P0, B, ] - [#,0,])
+ (Zlﬁ)_l tf([@tﬁt]—[ﬁ(x),wt]+)
~ [. 30,
+4 “(P"" [“’"T] . )
or, from (2.6),
d
—(—Q';(—tx)——t([H,P(X)] [#.0,].)
t
30,
+< at [Hth] >(t’x)‘

(2.11)

This is the equation for the time evolution of a local property
(Q.) (2,x). Note that (2.3) is recovered upon spectral sum-
mation of (2.11) on the set of eigenvalues x, because of the
completeness condition (2.5). But again, as noted after
(2.7), spectral summation over a subset of eigenvalues gives
d (Q, )/dt for the subsystem comprising this subset of eigen-
values of %. N

Comparison of (2.11) and (2.3) shows that if Q, satis-
fies the operator equation

[ W0]- (2.12)
then the global property (Q,) ; is conserved,
d A
(@) —o, (2.13)
dr

and the local property (@,) (£,x) is subject to a local conser-
vation law
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30, (%)
at
[Note that (2. 12), in the Schrodinger picture, is equivalent
to dQ ”/dt =0, where the Heisenberg operator
Q, = U Q, ntpr @nd U,, isdefined in (2.16) below.] We
consider several examples. The unit operator and, according
to (2.2), i, both satisfy (2.12). More generally, the solution
of the von Neumann equation (2.2) can be written as

=—i—tr([ﬁ,,?(x)]_[w,,@,]+). (2.14)

,=0,.0,035, (2.15)
where /(},’,0 is a unitary operator satisfying
aﬁ,,,o A PO
P ﬁH Uy = U,.,=1 (2.16)
Therefore, for any integer n>0,
= 0,005 (2.17)
Also R .
Ing, =0, (nd)U," (2.18)

According, 7 and In &, satisfy (2.12). From (2.6) and
(2.14), therefore, the local conservation laws for these prop-
erties are

c?tr(P(x)w )

= tr([ﬁ,,ﬁ(x)]_w;'), n>l,  (2.19)
atr(f’(x)g',) i A A ~
——— =—1r([H,,P(x)]_S,) 2.20
%% 7 ([H..P(x)]_S,) (2.20)
Here 3‘, is the entropy operator,
S =—ond, (2.21)

and tr(f’(x)g,) is the local entropy in the microstate f’(x).
The entropy of a subsystem comprising several microstates
is the sum of the local entropies in these microstates. The
global entropy tr S, is the von Neumann entropy,® which is
conserved when @, evolves unitarily in accordance with
(2.15).

If @ is any time-independent variable that commutes
with H (also time independent), then Q satisfies (2.12).
Therefore (Q ), is conseryed according to (2.13)—a “con-
stant of motion”—and (Q ) (¢,x) obeys the local conserva-
tion law (2.14).

lll. ONE-PARTICLE SYSTEM

The general discussion in Sec. I now will be applied to a
specific system. This example will elucidate the physical
meaning of the first term on the right-hand side of (2.11).
We consider a system consisting of one particle, identify % as
the coordinate operator, and assume that

H, =p/2m + V,(%). (3.1)

Here jp is the momentum; m, the mass; and V, (%), the poten-
tial energy at time ¢.

When £ is the coordinate operator, the local properties
defined in (2.6) are fields. The spatial coordinates x for these
fields are the eigenvalues of X for the system. In quantum
mechanics space comprises the global set of eigenvalues x of
% (see Ref. 5), in contrast to classical geometry, where coor-
dinate variables are defined on a space that is the three-di-
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mensional continuum of the real numbers.

We now specify (2.11) for the Hamiltonian (3.1) of the
one-particle system. The first term on the right-hand side
becomes

/28t H,P(x) ] _[#,0,].)
= (i/4m#)tr([p*,P(X) 1 _[@,,Q, ] )
= — (i/At([P(x),p] _+2,) = — u(P(x)V-2,),
(3.2)
where 2, is the flux-vector operator for the transport cur-
rent associated with the scalar field Q,,

Q,=(4m)_l[ﬁ,[ﬁ)t,Q,]+]+, (33)
and V is the commutation operator®
V() = (/A [B]_ . (3.4)
Furthermore, in coordinate respresentation,
. _ # J‘ J
=— | Ix)—(x|. 35
p=- xl ) ~ (x| (3.5)

Note: Differentiation with respect to discrete-valued
variables has been discussed in earlier works.*” Therefore,

f ((xlx -2 x| 2, 1%)

A

tr(P(x)V-2

- <x|@,|x'>-§<x'|x>) - 36; 2 (%),

2(tx) = tr(P(x)2,).
Thus, for the one-particle system, (2.11) becomes

(3.6)

30X g
T T e 2Um
+< Q’ [H 0.1- )(tx) (3.7
at 1 t » b

which has the form of an equatlon of continuity with source
terms. From (3.3), (3.5), and (3.6), the local flux vector
2 (1,x) is given by

2 (1,x) = (4m) = (P [, [ 9,0, ]+ 1)

=%[(§<x|)[w,,@,]+lx>

I (3.8)

For observables @, that satisfy (2.12), the source terms
in (3.7) vanish, and the local conservation law (2.14) be-
comes the equation of continuity

QI g

— (0,01 (=10 ).

— 2 (t,x). 39
ot ax (:x) (3-9)
For example, from (2.19) forn =1,
3 tr(P(x),) 9
—_— = — .« f(tX), 3.10
ot Py (3103

which is the equation of continuity for probability, with flux
vector £ (¢,x) given by (3.8) (Q, = 1 in this case),

F(x) = (2m) =" u(P(x) [Bd, ] 1)

- 22[[(’%@')'2”"‘) - ("’ﬁ’r(%lﬂ)] (3.11)
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In the pure case, in which @&, =|¢,)(¢,| and
(x|¢,) = ¢,(x), (3.10) and (3.11) give the well-known
equation of continuity®

HOUD 3 b [ W0
5 ax 2mi ox
awr(x)]
_ . 3.12
G (12

Similarly, the local conservation law for entropy (2.20)
becomes the equation of continuity,

M: __a__.y(t,x), (3.13)
at ox
with entropy flux vector
Ltx) = 2m) " te(Px) [3,S, ] +). (3.14)

We may obtain the rate of change of local properties for
other observables of the one-particle system from (3.7). For
example, for the momentum, with ¥ = p/m,

apy(tx) 9
ax

) ._:’.tr(?’(x)[e,[wnf’]+]+)

— (FV,(2) (1,x). (3.15)

Note: We use the convention in the divergence term that
the scalar product is between d /dx and the adjacent vector ¥
as written, so that d /dx dots ¥ in all four terms arising in
expansion of [¥,[@,,p]]+. In (3.15), we identify the
stress tensor as the local symmetric tensor

W(1,x) = (m/$e(P) [4,[B,9] 4 14)- (3.16)
The rate of increase of the local kinetic energy is
a (im?z) (t,x)
ot
S tpolforoe] 1)
Ix 4 2 +14
— K[V, ()], 00, (3.17)

with the kinetic energy flux vector related to the stress tensor
of (3.16). The rate of increase of the local potential energy is

at
_ _i._l__tr(ﬁ(x)[e,[w,,V,(i)] 1+)
Jx 4 ”

+ <3V, (%)
at

The rate of increase of the local total energy, the sum of
(3.17) and (3.18), is

+%[e-ﬁV,(i)1+>(t,x). (3.18)

HEIEX) 4 1 s o
= - Ttr(P(x)[v,[w,,H,]+]+)
(‘7 V. (2) )(t,x). (3.19)
at

The example of a one-particle system illustrates that the
local level of description of quantum systems, according to
(2.6) and (2.11), provides a suitable context for treating
thermodynamic problems. A subsystem containing the mi-
crostates belonging to a subset [x], of the eigenvalues x of
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the global system, constitutes a thermodynamic system. The
remainder of the microstates belonging to the complemen-
tary subset of x is the “surroundings” of the thermodynamic
system. This system plus surroundings is the thermodynam-
ic “universe,” the global system in our terminology. For ex-
ample, spectral summation on [x], in (3.19) gives

d{H), _ _§ U (1.x)do + <‘W‘(x)) . (320
dt at 1
where
(I?:>l =f (I?,)(t,x),
aV . [x]y X (3‘21)
(awy [ (),
a I (x1,\ Ot

and

9
2 (tx)d =f 9 2 @x)
§ 7 ix);, OX

is the integral over the boundary surfaces enclosing the mi-
crostates belonging to the subset [x],, assumed to be suit-
ably connected so that Gauss’s law applies. This surface inte-
gral represents the transport of energy into the
thermodynamic system from its surroundings by the energy
flux vector,

% (t,x) = to(P(x) [V,[D,,.H, ] +] +)- (3.23)
If the Hamiltonian H [ie., ¥(%)] is time independent in
(3.1), the energy of the global system is conserved, and, ac-
cording to (3.20), the energy increase of the thermodynamic
system arises entirely from transport of energy from the sur-
rounding through the boundary surfaces.

(3.22)

IV. REALIZATION OF LATENT ENSEMBLES

In the preceding sections the statistical operator @, is
given by (2.15), a solution of the von Neumann equation
(2.2), evolving unitarily in time. This is a globally isentropic
process as noted after (2.21). A second mechanism, in addi-
tion to unitary transformation, for change of the statistical
operator has been proposed in a recent paper*: realization of
latent ensembles. It also is a global process, occurring irre-
versibly with non-negative entropy increase. We wish to con-
sider the effects of this global process on the local properties

of the system at a microstate P(x).

We first give an outline of the mechanism of realization
of latent ensembles. The initial value of the statistical opera-
tor at 7, is assumed to be a ¥ ensemble, characterized by the
spectral representation

w(¥) = f|v)w(v)(v|, fw(v) =1.

Here ¢ is a complete commuting set of observables of the
system with eigenvectors |v) belonging to the nondegenerate
set of eigenvalues v of ¥. An eigenvalue w(v) of w(¥) gives
the initial probability of the obgervable ¥ in the v microstate;
it is specified by the projector P(v),

w(v) = rlw®PW1, Pv) = [v)(vl. (42)
These probabilities are determined in a v measurement situa-

tion at 7,. The statistical operator evolves unitarily from its
initial value w(¥) in accordance with the von Neumann

4.1)
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equation (2.2), so that for >, it becomes
w,, () =2, w2, (4.3)

according to (2.15) and (2.16). If § is another complete
commuting set of observables, the latent § ensemble of the
system whose statistical operator is w, , (V) is, by definition,

1,,, () = Ltr[w,,,o<e)ﬁ<q) 1P,

P(a) = [a)(al- (4.4)
Thus, w,, (¥;q) is the diagonal projection of w,, (¥) in §
representation. The global expectation values of the micro-
states P(q), and hence of any function of §, are given by
(P@), =tr[w,,(HP@]
=tr[w,, (HDP@]. (4.5)

In the event of a §-measurement situation at ¢ = ¢, > £, the
latent § ensemble is realized as the statistical operator
w,, (§) for r>1, replacing the previous statistical operator

1w, (9),
wt,tl(d) @u,w(Q)%nl s
D =U, 25

fto?

(4.6)

where the initial value at ¢, of the new statistical operator is

w(§) = f|q>w(q) (g =w,, ., (V:@), (4.7)
q

the same as the latent § ensemble at the moment of realiza-
tion, ¢ = ¢,. From (4.5), (4.3), and (4.1), it follows that

w(q) = tr[w,, (NPQ)]

=f|<q|~@,‘,,°IV>I2w(v)- (4.8)

According to this mechanism the statistical operator is a
succession of ensembles each evolving unitarily from its ini-
tial state, which is a realization of a latent ensemble in the
preceding one.*

We now consider the effects of the realizationat r = ¢, of
the latent § ensemble in (4.4), a global process, on the local
properties at a microstate specified by P(x) in (2.4). For
t <t,, the local expection of P(q) at x for the system with
statistical operator w,, (¥) is given by (2.6) as
P@)) (t<t,x) = J (P [w,, (DP@]L) (49
For t>1,, for the system with statistical operator w,, (§), itis
P@) (1,0 =1 1P [w,,, (@.P(@],).  (410)

As t—t,, (f’(q) Y (t <t,x) in (4.9) approaches the limit
F@) (7 %) =3 uPx) [w,,,, (D.P@)] 4)
=3[ {xlw,,,, (M ]a) {(q|x)
+ (x|g)(qlw,,,, (V) [x) ]
and (?’(q))(t)tl,x) in (4.10) becomes
C(B@) (¢ %0 =1 (P [, (50).P(@) ] 1)
= |<x|q>|2<<1A|w,,,,o(€')|q>, (4.12)
which is the local expectation of P(q) in the latent § ensem-

(4.11)
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ble at t,. In general, these two expectation values at ¢, are not
equal, although when summed over x they give the same
global expectation values according to (4.5). Accordingly,
when the latent § ensemble is realized at ¢,, the local expecta-
tion value of P(q) at x changes discontinuously from its
value in (4.11) to its value in (4.12). At t = ¢, a redistribu-
tion of local expectation values occurs among the spectral
points x of X, while the global expectation value is un-
changed according to (4.5). An exception is the case in
which the set § is the same as %. In this case with ¢ = x',
another eigenvalue of X, the expectation value of P(x') is the
same in (4.11) and (4.12), namely,

(P(x)) (1,,%) = {x|x') (x|, , (9)]x) (4.13)

so that no redistribution occurs at ¢,; the local expectation at
x of any function of X changes continuously from its value in
w,, (V) for > ¢, to its value in w,, (%) for £>¢,.

_. The von Neumann entropy of the system is given by
tr S, in (2.21). From (4.3) this global entropy for t < ¢, is
represented by

S [w,,,0 (i")] = — tr[w,,,o(ﬁ)ln w,,,o(i")]

= —fw(v)ln w(v), (4.14)

and for £¢,, after realization of the latent § ensemble, by

S [we, (@] = —fw(q)ln w(g). (4.15)
q

These expressions are independent of time, while the statisti-
cal operator evolves unitarily. As shown previously*
S [wer, (@) ] — S [w,,, (¥)]20. (4.16)

This non-negative global entropy increase attends the real-
ization of the latent § ensemble at ¢,. It is of interest to con-
sider the local entropy changes that this realization entails.

The local entropy at (£,x) is given by tr(P(x)S ) in
(2.21). We write it for 1<, as

S [we,, (V) ]b(t,x) = — tr(?’(x)w,,o(i")ln w,, (V)

fl(xl U, V) Pw(v)In w(v),
4.17)
and for ¢>1,, as

S [Weq (@] (63) = — f x| T, @) Pw(@)In wig).
! (4.18)

Spectral summation onxin (4.17) and (4.18) gives back the
global entropies (4.14) and (4.15), respectively. The in-
crease in local entropy at x, on realization of the latent §
ensemble, is the difference in these expectations evaluated at
Ly,

S [, (@) ] (%)

- f|<x|q>|2w<q>1n (@)
q

— 8 [W,, (D ] (53)

+f|(x|’t7,l,,o|v)|2w(v)1n w(y). (4.19)

This increase can be interpreted as follows. Define a local
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entropy quantity, denoted by S [w,,, ( i");(’i] (t,x), fort <t
S [w,,, (9);d] (2,x)

= - f (P P())tr(P@)w,, (D)n w,,, (3)
q

= ~ [ [P @D, D Pemnum. @20
qJv

This is the local value at x of the diagonal projection of the
entropy operator §, = — w,, (¥)Inw,, (¥) in § representa-
tion for ¢ < t,. The spectral summations on x of § [w,',o (¥) ]
X (t,x) in (4.17) and § [w,,,o(i');('i] (z,x) in (4.20) both
give the global value in (4.14),

J“S [wt.to (9)] (tx) = J S [wt,zo(f);ﬁ] (,x)

=S [, (D] (4.21)

Therefore, the local values S[w,, (¥)](sx) and
S [we, (¥);8] (2,x) represent two distributions among the
spectral points x of the global entropy at ¢ < ¢,. Furthermore
from (4.8), (4.18), and (4.20), att=1¢,,

A [wt,tl (@ ] (1,%)

- _ f (x|} |Pw(q)In w(q)
q

> [ [ 1xla) PialD Y FrCo)in (o)
q vy
= § [Wy (M:2] (113),

where the inequality follows since — w(v)In w(v) is a con-
cave function, and for any concave function f (x),

;ﬂ.-f(x,.xf(}i;z,.x,.),

(4.22)

(4.23)
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for 2,4, =1 and 4,>0. Accordingly, the increase in local
entropy in (4.19) can be written as the sum of two terms.
The first term,

S [wr,xo(e);ﬁ] (t,x) =8 [w,,,o(f) ] (2,%), (4.24)

is the change at ¢, from the redistribution of local entropy
expectation values among the spectral points x, a redistribu-
tion that leaves the global entropy unchanged according to
(4.21); this discontinuity in local entropy at x is analogous
to the discontinuity in the local property (P(q))(#,x) at ¢,
discussed above following (4.12). The second term,

S[wx.tl (@ ] (t,x) =S [wz,ro(e);ﬁ] (,x)20, (4.25)

is a non-negative local entropy production at (#,,x) accord-
ing to (4.22). Summation on x in (4.25) gives the non-nega-
tive global entropy increase in (4.16). In the special case in
which § is the same as &, the term in (4.24) vanig\hes so that,
as in the analogous case of the local property {(P(q)) (,x),
no redistribution of local entropy occurs at ¢,, but the non-
negative local entropy production according to (4.25) re-
mains.

The results of Sec. IV do not depend on the assumptions
of the one-particle problem that was considered in Sec. III.
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Wave vector dependent susceptibility of a free electron gas in D dimensions

and the singularity at 2k,
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The static susceptibility of a free electron gas in D dimensions at T = 0 is obtained by techniques
of dimensional regularization. Our solutions for the susceptibility y (k,D) are given in terms of the
hypergeometric function. For any integer dimensions analytic expressions are possible. The high-
and low-k series solutions are shown to be related by an analytic continuation if D is an odd
integer, but not related if D is an even integer. The singularity at 2k ¢ is a branch point, whereupon
the series solutions are absolutely convergent, yielding y(k = 2k g, D) = (D — 1)~ ", The
relationship of ykD has the appearance of a PVT diagram.

I. INTRODUCTION

The wave vector k dependent susceptibility y (k) is a
basic physical quantity in many-body physics.' It enters into
a variety of physical relationships, e.g., dispersion relations,
scaling laws. For a free electron gas this quantity is exactly
known in spatial dimensions D = 1,2, and 3.2° Especially
interesting is its singular behavior at kK = 2k  due to what is
known as the Pauli blocking, where k. is the Fermi wave
vector. This singularity is responsible for the Kohn anomaly
in the phonon spectrum of a metal.” The singularity in the
susceptibility at 2k ¢ is D dependent. In D = 1 the suscepti-
bility has a logarithmic divergence. In D = 2 the susceptibil-
ity is finite but its slope is discontinuous. In D = 3 the slope
has a logarithmic divergence. This trend suggests that the
strength of the singularity becomes weaker with increasing
dimensions. A precise knowledge of the D dependence
would be of interest.

In addition to its own intrinsic interest, the susceptibil-
ity for a free electron gas is useful in other ways. If electrons
now freely interact pairwise via the Coulomb force, the sus-
ceptibility for the interacting electron gas always can be writ-
ten in the following form: ™™ (k) = y(k)/(1 + A x(k)),
where A, is some function of the interaction.® If A, = v,,
where v, is the Fourier transform of the Coulomb potential,
one gets the simple random phase approximation (RPA)
theory. If A, = v, (1 — G,), where G| is a local field term,
one recovers the generalized RPA theory. Hence, the knowl-
edge of the susceptibility for a free electron gas is essential to
these RPA theories.

The above idea may be extended to the linear response
theory of dynamic processes since y(k) = y(k,w =0),
where o is the frequency. In dynamic theories, the knowl-
edge of the static susceptibility is always presupposed.’ For
example, the relaxation function is normalized with respect
to the static susceptibility. Moment sum rules are expressible
in terms of the static susceptibility.’

More subtle is that the susceptibility may be defined by
the Kubo scalar product (see Sec. IT). The Kubo scalar pro-
duct is an inner product that realizes an abstract Hilbert
space. In this realized space time-dependent quantum statis-
tical problems are all definable.'® Hence, the existence of the
susceptibility plays a central role in the study of time evolu-

1618 J. Math. Phys. 27 (6), June 1986

0022-2488/86/061618-06$02.50

tion of dynamic variables.'! In such a study there is the possi-
bility that the relaxation function may assume a mean-field
form in all spatial dimensions greater than a certain critical
value.'? This kind of dynamic anomaly is signaled by a defor-
mation of the realized Hilbert space.'”* Furthermore, the
critical dimension may take on a noninteger value. The phys-
ics of noninteger dimensions is of current theoretical inter-
est. See, e.g., fractals,' € expansions,'® kinetics of forma-
tion.'®

The evaluation of the susceptibility for higher integer
dimensions, e.g., D = 4 may be carried out as was for D = 1-
3 (see Secs. II and IIT). We shall use techniques of dimen-
sional regularization developed in particle physics'’ to ob-
tain a solution for the susceptibility that is valid for any D,
integers and nonintegers. This solution y(k,D) might be
viewed as, e.g., the PVT diagram of a homogeneous fluid. It
traces a contour, which is a map of a continuous surface.
This map is naturally divided into two regions (high k and
low k) by the D line at k£ = 2k . By moving alongside of this
boundary line, one can examine the mathematical nature of
the singularity at 2k .

We find that y2keD)=1/(D-1), D>1;
Y 2kg D)= —(D-2)/(D—-1)(D—3), D>3, etc,
where Y’ = dy/dk. We also find that the susceptibility is of
two families, D odd and D even. For D odd, the singularity at
2k is all logarithmic in origin. For D even (high-k region)
the singularity is of the square root. For D odd, the solution
in one region is an analytic continuation into the other and
2k ¢ isabranch point. For D even, there are no such relation-
ships and k = 2k is a branch point only at the high-k re-
gion.
Il. STATIC SUSCEPTIBILITY

A free electron gas is described by the following Hamil-
tonian:

H=26kczck, (1)
k

wheree, = k2/2m, m is the mass of the electron, and ¢} and
c, are, respectively, the fermion creation and annihilation
operators at wave vector k. Our units are such that #= 1.
The longitudinal response to a weak static density-coupled
perturbation is the static susceptibility given by the Kubo
scalar product® (KSP),
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1K) = (P, ) =fd/1 (epe~*pl), (2)
(1}

where B is the inverse temperature, the brackets (---) denote
an ensemble average, T denotes Hermitian conjugation, and
Py is the density fluctuation operator defined as

P =2 Ch ok - (3
P

For a free electron gas the KSP may be reduced to the
well-known form

x (k) =2z_f£__.f;’;", (4)
I4

€rk— 6
where f; is the Fermi function. Converting the sum into an
integral we can rewrite (4) in spatial dimensions D as

¥o (k) =4(21T)_DdepL.
€

p+k —€p

In the second term of (4) we make use of the fact that £, and
€, are both functions of |p|. At T'= 0 the Fermi functionis a
step function, i.e., f, = 8(kx — k). Hence, for D small inte-
gers one can directly evaluate (5). For D = 1-3, the suscep-
tibility is already known.>® For comparison purposes, we
shall list its normalized values y, (k)/yp (0), expressing k
in units of k ¢:

(3)

(k) =k 'Inj(2 + k)/(2—-K)|, (6a)

X2(k) =1—0(k—2)(1—4/k*)"?, (6b)

1) =4 [1+k 71— kD)2 +k)/Q2-R)]].
(6c)

ill. EVALUATION OF THE SUSCEPTIBILITY FORD =4
The static susceptibility for D = 4 may be written down
from (5):
sin” ©

(ky = TKE fld 3J2”de
XS ==50 6 PP, k+2pcos©

We shall consider the angular integral first (denoted by Q).
It may be converted into a contour integral on the unit circle
by the substitution u = e,

(N

i (uz— 1)2
=_— ¢ d R 8
Q 4p¢ “ w(u—u,)(u—u_) (8)
where
u, = — (k/2p) + ((k/2p)* —1)"/2.

The zeros of the denominator are O, u_, and u_. The zeros
u, and u_ may be real or complex depending on whether
|k /2p| is greater or less than 1.

(i) |k /2p| > 1: The conjugate zeros # , and u _ are real,
lying, respectively, inside and outside the unit circle. Hence,
the zero u_ does not contribute to the integral. The residues
atOand u, are, respectively, — k /pand 2((k /2p)? — 1)"/2
Together,

Q= (7k/2p")[1 — (1 — (20/k)?)'?] .

(ii) |k /2p| < 1: The conjugate zeros are now complex
and lie on the contour of integration. If we take the Cauchy
principal value, their contributions cancel each other exact-
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ly, leaving only the zero at the origin to contribute to the
integral, giving Q = 7k /2p*.
Both may be combined to read as

Q= (rk /2p*)[1 — O(k*—4p>) (1 — (2p/k)VH)] .
(9)

Using (9) in (7) we can now complete the radial part:
XalF)=ya(k)/x4(0)
=1—(k%/6)[1—6(k—2)(1—4/k?)*?], (10)

where y,(0) = mk % /47*. We observe that the suceptibility
and its derivative are both finite and continuous at k = 2k ¢.

For D even, generally the same idea may be used to
evaluate the angular integral. There always is one pole of
order D — 2 at the origin. The conjugate poles #, and u _
behave in the same manner as described for D = 4. For D
odd, one cannot avail of this simplification and must resort
to, e.g., integration by parts. In any event, the evaluation of
the susceptibility by this standard approach becomes very
tedious as D— oo . Also one is limited to integer dimensions
only. We shall, therefore, consider another approach, i.e.,
dimensional regularization,'” which may allow us to obtain
the susceptibility possibly more simply and, more important,
in any dimension.

V. DIMENSIONAL REGULARIZATION
From (5) it is possible to express the zero temperature
susceptibility for D33 as follows'®:

Xb (k)
1 T k 1
=AJ- dppD‘IJ do (sin0)"“2(-2—+pcos0)
0 0

=Al, (11)

where A =A(k,D)=2kPS,_,/kex(2m)P,  where
Sp = 2(I‘(§))D/I"(5D), and k is in units of k. To evaluate
this double integral, we exchange the order of integration.
For &k > 2 the integrand is well behaved in the given interval
of p. One can, therefore, expand it in powers of (2/k) and
carry out the integration term by term. If, for k<2, one
attempts to expand it in powers of (k /2), one encounters a
pole in the interval of p. To avoid this apparent difficulty, we
consider the following integral:

T 1
I, =f do (sin@)”“zf dpp”“'(%—}-pcos&)zsnl.
0 0

(12)
If we assume s is a positive integer, the new integrand is now
well behaved in the interval of p for any k. Hence, one may
expand it binomially and complete the integration term by
term. Then one may possibly analytically continue I, to ob-
tain Jy==I. Clearly for K> 2 this process it unnecessary,
hence it can be used as a direct test.

For any positive integer s, we obtain

S (} k)T (2s5)
im0 (D+2s—n— DI (2s—n)(n+1)

2s—1

I =

5

XJ dé (sin 8)° ~%(cos @)=~ "1, (13)
0
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where I' is the gamma function. Next the angular integra-
tion, although cumbersome, is straightforward. Terms of
even n vanish and terms of odd n are the beta functions.
Letting n—2n — 1, we get

oL g (A

2 ~=i\2
N F'2s)FD—-HDris—n+14)
FT2n)L(2s—2n+ DI (Gs—n+3D+1)

(14)
The above expression is appropriate for the k < 2 expansion.
To obtain an expression more suitable for the k> 2 expan-
sion, we rewrite (14) in ascending powers of (2/k) by letting
§ — n—n,

1 k)Zs—ls—l(2)2n
I =—|—= =
’ 2(2 ,Z'o k

F2s)rap-pPrn+4)
L(2s—2m)T(2n+ DI(n 44D+ 1)

Both expressions [ (14) and (15)] are clearly well de-
fined for any finite positive integer s. There are s terms in
each expansion. We now take advantage of the gamma func-
tions present in our expansions to perform analytic continu-
ation. We first note that, for any r> 0,

lim I'(¢ 4+ 1) =:T'(2)

t——1

= (=D =2 =r 4+ 1) (=NT(~1).

(15)

Hence

m I'(2s)
m
s—o I'(2n)I'(2s —2n + 1)
_(=D(=2)(=20+ DI (=2n+1)
F@2nmT(—-2n+1)

and
] I'(2s)
s+0 T'(2s = 2n)T(2n + 1)
_(=D(=2)(=2n)T(—2n)
F(—2nTr2n+1)

=1

Using these results we get'®

1 1 1 s k 2n —1
0 2 \2 2 2'1 2

y L(—n+1))
T(—n+p+1)’

1 1 1 ) 2 2n+1
2 2 2 ,,;o k

L(n+1)
T(n+4D+ 1)’

k<2, (16a)

k>2. (16b)

Finally, using the definition for 4, y(k=0,D) =
27w)PS,, /€x (see Ref. 20), where

SD/SD-I = I"(i) FQD - %)/FQD) ’

(kg/
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we get
y(k,D)=y(k,D)/y(0,D)

1 T4D) = (k>2n—z

2 T
y F(—n+)
C(—n+4D+1)
_ 1 Tyd) w+2 T(n+4)
T2 T £ o(k) T(n+P+1)’
k>2. (17b)

Since the gamma functions are well defined for any argu-
ments other than zero or negative integers, our solutions
(17a) and (17b) are applicable to any value of D. Our series
solutions agree term by term with the high- and low-k expan-
sions of the susceptibility for D = 1-4 [Egs. (6) and (10)]
previously obtained by a conventional method.

n=1

k<2, (17a)

V. APPLICATION OF THE HYPERGEOMETRIC
FUNCTION

It is possible to express the susceptibility series [Eqs.
(17a) and (17b)] in terms of the hypergeometric series
F(a,b;c;t) defined as follows?!:

(18)

d b
Faben=3 222 |1 <1,
4

n=0 n n!

where a, =T'(n +a)/T (a), etc., c#0, — 1, —2,.... The
advantages of having the susceptibility given in the hyper-
geometric function (hgf) are evident. One can obtain analyt-
ic representations for integer dimensions. Properties of the
hgf may be used to study the behavior of the susceptibility at
the singular point 2k . The high- and low-k expansions may
be related through an analytic continuation.

For this purpose, we introduce z = (ik)2 and let
Xl(z,D) X(Z< 1,D) and Xz(z,D) X(z> 1,D). We shall
consider x, (z,D) first. Using the identity

Frt—n)=(-DTWO(—-t+H/T(—t+n+1)

in (17a) we obtain after some manipulations

XzD) = — i) 3 7 T+ 1-40)
DI'( —iD) +/=o '(n+3)
=F(1,1 —1D;};z) . (19a)
Similarly, we obtain from (17b) with the aid of (18)
¥2(zD) =D "'z 'F(1,41 + 4Dz 7Y . (19b)
Hence, together we have
x@D) =F(1,1 —iD;}2), z<1, (20a)
=D z7'F(L,1 +4D;z™"), z>1. (20b)

We observe that for D = 1 the high and low sides of the
susceptibility have the same parameters of the hgf: a =1,
b =1, ¢ = }. For these values the hgf has an analytic repre-
sentation

F(Lgge) =4t 'In(1+0)/(1—10), |r|<1. (21)

The resulting susceptibility is in exact agreement with the
D =1 result [Eq. (6a)].
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To obtain analytic representations of the susceptibility
for other integer dimensions, we study the hgf. Consider
F(1,1 — 1D33;¢) first. For Deven, b =0, — 1, — 2,...,and for
D odd, b =14, —}, — }... . Hence, for D even, the hgf is a
polynomial. For D odd, the hgf is contiguous,” i.e.,

F, ,=[1+0-b0-F]/G-b), (22)

where F, = F(1,b;3;t). Hence, using the known form for
F,,,, one can generate all others readily. Now since F, ;, con-
tains a logarithmic singularity [see (21)], all odd-dimen-
sioned low-k susceptibility contains the same singularity.

We next consider F(1,4;1 + 1D;t). For D even (includ-
ing0),c = 1,2,3,... ,andfor D odd, ¢ = 3,3,],... . Inboth cases
the hgf is again contiguous,

Fooi=¢[1-(0=0F]/(c—t, (23)

where F, = F(1,};c;t). Hence, now there are two “seeds,” F
and F;,,, where

F =F(l,i;1;t)=(l_t)—l/2 (24)

and F;,, is already given [see (21)]. Thus all the even-di-
mensioned high-k susceptibility has a square root singular-
ity, while the odd-dimensioned high-k susceptibility has a
logarithmic singularity.

Shown in Table I are analytic representations of the sus-
ceptibility for D = 0-6 in the high- and low-k regions ob-
tained by the relationships of the contiguous hgf. Even- and
odd-dimensional cases are grouped separately to emphasize
their distinctive singular behavior. These results for D = 1-4
are in agreement with the previously established results
[Egs. (6) and (10) ]. The agreement for D = 1 and 2 is inter-
esting in view of the original restriction imposed on Eq.
(11), i.e., D>3. Evidently, the dimensional regularization
techniques used here has removed ultimately even this re-
striction. Illustrated in Fig. 1 is the susceptibility versus
wave vector for a few low-integer values of D.

VI. BEHAVIOR NEAR 2k,

The hgf F(a,b;c;t) is absolutely convergent on |t | = 1 if
Re(c — a — b) >0 and has the value?!

F(abc;1) =T(c)[(c—a—-58)/T(c—a)l(c-0b).
(25)

FIG. 1. The susceptibility versus wave vector at integer values of D. Here k
is in units of k.

If applied to the high- and low-k sides, we find that
Y1E=1D)=y,(z=1,D)=(D—-1)"", D>1.
(26)

Thus, the susceptibility is continuous at z=1 (k =2kg)
except when D = 1.
The slope at the boundary can be evaluated by using

:%F(a,b;c;t) = Ea 14T+ 1D 27)
c

and (25) provided now that Re(c —a — b — 1) > 0. We ob-
tain

J ~ ad ~
— = 1 = — =
az)(l(z D) azXz(Z 1,D)

= —-—D=-2)/D-1Y(D-3), D>3.
(28)

Similarly, we obtain
I\~
g =1
(az) x(z=1D)
=2D=-2YD-4)/(D-1)Y(D-3)(D-95),

D>5, (29)

TABLE L. Analytic expressions of the susceptibility. These results are obtained by the relationships of the contiguous hgf. L, = In(1 + z'/?)/(1 — z'/?) and

L,=In(1 +z"Y?)/(1 —2~'%).

D X 12

0 2712 — z)~ 12 5ip=1 212 Dz 'Y (1—-2z"1H""2, D0

2 1 1—(1~z"Hv?

4 1-2z/3 1—-22/3(1 — (1 —2z71)%7)

6 1 —4z/3 + 82/15 1—42/3 + 82/15(1 — (1 —z=1)%3)
l sz_l/ZLl 52-"”2L2

3 j+42 21— 2)L, V+172 1 = 2)L,

5 §—32/8 4+ 3/162=2(1 —2)°L, §—32/8 + 3/1627V%(1 — 2)°L,
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TABLE II. Boundary values of the susceptibility. Here ' and y” are, respectively, the first and second derivatives of Y (2,D) with respect to z and evaluated at
z = 1. These undesignated oo’s are divergent as (1 —z~') ' for D evenand (1 — z~'/2)~" for D odd. In the unfilled regions, the appropriate formulas are

given.
D ;1 ;’2 :1:: ;’5 I"n' X2
1 o« (log) o (log) © — ®© o 0
2 1 1 0 — 0 ®
3 i i — oo (log) — o (log) © ®
4 ! ! -3 -3 0 -
5 —3 —4 o (log) o (log)
6 B #
1 ~(D-2)
(D-1) (D—-1)(D-3)
2(D-2)y(D-—-4)
(D—-1)(D-3)(D-5)
© 0 0 0 0 0 0

Thus, where convergent, we see that the high- and low-k
sides of the boundary have the same first and second deriva-
tives. In Table I1, we have given the boundary values.

We can also examine the behavior of the susceptibility
along the boundary itself, that is, the z = 1 constant line in,
say, the Dz plane. From (26) we see that the behavior is
simpler, e.g., (8/dD)y(1,D) = — (D —1)7?, etc., than
the behavior in the direction perpendicular to the boundary.

We shall use other properties of the hgf to establish addi-
tional properties of the susceptibility at the boundary. First
of all, the hgf F(a,b;c;?) has two branch points, one at £ = 1
and the other at infinity if @ or b is not a negative integer.
Hence, except when D is an even integer on the low-k side,
the boundary is a line of branch points.

Also the hgf F(a,b;c;t) is defined by a power series [see
Eq. (18) ] for f complex when |¢ | < 1. Itiscertainly regularin
this domain. Hence, the susceptibility is defined even for
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noninteger values of D. The hgf is also defined by analytic
continuation when |f|>1. It suggests, therefore, that
Y2(2z,D) may be an analytic continuation of y, (z,D) into the
high-k region.

Itisknown that when ¢ liesin the part of the cut plane for
which |z |>1, |arg( — t) <7 (see Ref. 21),
F(a,byc;t)

=B(a,bec)(—1t)"°F(al —c+a;l —b+a; ™)

+ B(bac)(—1)~°

XF(bl —c+ bl —a+by~1y, (30)

where

B(ab,e)=T()L(b—a)/T(b)(c—a). (31)

Hence, F(a,b;c;t), when it has a meaning, is a one-valued
analytic function, regular in the whole plane of ¢, cut along

FIG. 2. The susceptibility as a function
of z and D. Small circles form a line of
branch points, and z = (k /2)2.
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the real axis from £ = 1 to co.

Let the domains |z| <1 and |z|>1 be denoted, respec-
tively, by &, and Z,. By our deﬁmtlon X1» Which is analytic
in Z,,is y in 7, and similarly X is the analytic function y
in Z,. Then by the above-stated properties of the hgf,

F=F(1,1 —iD; g,z) is analytic in Z VD, If for
Rez,Re ¥ =y,in &, and Re ¥ =Yy, in D, then y, is
the analytic continuation of Y: into &, (see Ref. 22). By
(31),

F =Dz 'F(1L1 +4Dz" ) + TOT( +4D)

X(—z) TP (- TR (32)

Consider .¥ when D is an odd integer first. It is suffi-
cient to take D = 1 since & of other odd integers can be
generated from it. Then, for D = 1,

F =4z In(1 +27) /(1 ~27V?) +4(—2)7"2.

(33)

In the domain &, the above logarithmic argument is nega-
tive. It can be resolved into real and imaginary parts, the
latter of which cancels the second term of (33) exactly, leav-
ing

F =3z "2 In(1 +2"*)/(1 —-2"?) . (34)

Hence, Re F = y, in 2 ,. It follows directly tht Re # =y,
in Z,. One can s1m11ar1y show that whenever D is an odd
integer, Xz is the analytic continuation of y Y, into Z,.

We next consider ¥ when D is an even integer. Then,
b=1-1D is either zero or a negative integer and
X, F(1,b;3;z) is an entire function being a polynomial. But
X-is not a polynomial. The two functions are thus not related
although continuous at z = 1. One can, in fact, show by (32)
that, for Rez, Re ¥ = X, in ,, but Re ¥ ;é)(z in Z,.
With this analysis we conclude that when D is an odd in-
teger, )‘22 is the analytic continuation of f,; but when D is an
even integer, it is not. When D is not an integer, the relation-
ship established for D odd integers is expected to hold.

Vil. DISCUSSION

Our results for the susceptibility obtained as a function
of zand D are embodied in Fig. 2, which gives a three-dimen-
sional projection of yzD. It is reminiscent of the PVT dia-
gram of a homogeneous fluid. The surface represents the
susceptibility that is physically accessible as z and D are var-
ied. The shape of the surface is distinguished by an unbroken
“ridge” (marked in the figure by small circles). It is a line of
branch points, a z = 1 constant line. The ridge separates the
surface into two sides (high k and low k). The low-k side of
the surface is further subdivided by the D = 2 constant line
into an area of rising curvature and an area of falling curva-
ture. The high-k side of the surface is not divided further.
Hence, the ridge is folded upward for 1 <D <2 and folded
downward for 2 <D < .

The ridge itself shows very smooth behavior, becoming
singular at one end (D = 1) and vanishing at the other end
(D = ). Other z-constant lines, e.g., z = 0, are less inter-
esting. More interesting are D-constant lines that intersect
the ridge. They look much like the familiar isotherms in the
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PV diagram (also compare Fig. 1). When D is an integer, the
intersection is a point of singularity, either openasin D =1
or hidden as in D = 2. The ridge is punctuated with these
intersections throughout.

Other finer details of the susceptibility surface are possi-
ble to give. Except on the D-constant lines of even integers,
one can move across the ridge via analytic continuation.
These excepted lines are demarcated by the ridge. That is, on
these excepted lines, the knowledge of one side is insufficient
to describe the other side.?® The singularity at z=D = 1 is
weaker when approached perpendicular to the ridge than
when approached along the ridge. To some extent our pic-
ture is applicable to an interacting electron gas by virtue of
the RPA theories.”*
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The zeros of the dispersion function that arise in particle transport with anisotropic scattering are
studied. An algebraic test for the number of zeros is presented.

I. INTRODUCTION

In treating particle transport in plane geometry with
azimuthal symmetry, the transport equation of the particle
density W (x, p) is often written in the form'

+1

yé—\li-l—\lf(x,u) =< S, p ¥ (x, p)d p',
Ix 2 1

(L.1)
where c is the mean number of secondary particles per colli-
sion, x is the distance measured in mean free paths, and p is
the direction cosine of the angle between the x axis and the
particle velocity. Here it is assumed that the scattering law is
such that f( u, u') can be adequately represented by a finite
Legendre expansion, viz.,

N

fAp,p)=3 Qn+ D)2, ()P, (1), (1.2)

n=0
where P, ( 1) is the Legendre polynomial of order n and
physical considerations require that f,=1 and
If.1<1, n>1. For definitiveness it will be assumed that
Jw #0. The purpose of this paper is to reexamine the zeros of
the dispersion function that arises in the solution to Eq.
(1.1). In particular, Mika® showed over two decades ago
that solutions of the form @, (u)exp( — x/v) yield the
eigenvalue equation

N
V=g, (1) == 3 VP (W) (), (13)
n=0
where
+1
by (v) = P (e, (p)dp. (1.4)

—1
Further, Mika showed, using the orthogonality and recur-
sion properties of Legendre polynomials, that 4, . () is a
polynomial uniquely determined by the recursion formula

(n+Dh, 1 (v)+nh, . (¥)
= Qn+ 1)1 —cf,)vh, . (v), (1.5)
and the nonrestrictive requirement that 4 _, . (v) =0and
o (v) = 1. (1.6)

The so-called discrete solutions of Eq. (1.1) are ob-
tained by solving Eq. (1.3) for ¢, ( 1) and using the norma-
lization given by Eq. (1.6). The result is that discrete solu-
tions occur for those values of v in the complex plane
C\[ — 1, + 1] that are zeros of the dispersion function

+1
Ac(")=1+-—c—J _"M_’_‘id#,
2J0 p—vw

(1.7)
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where

N
gluy)y=3 Q2n+1)f,P,(p)h, (v). (1.8)
n=20

The dispersion function obviously has a cut in the complex v
plane along ( — 1, +1). The limit values A (u) and
A (p) of A (v) as v approaches a value ue( — 1, + 1)
from the upper and lower half complex planes, respectively,
are given by

+1 .
AF (p) =1+in ve(n, ) dn + ‘”Cﬂn(/t)’
2 Jo op-p 2

(1.9)
where P indicates the Cauchy principal value and

Ye(p) =8(u, p). (1.10)
Case® and Hangelbrook® have shown that A ( u) does not
vanish for -1 <u < + 1 and Lekkerkerker® has shown that
the same result is true for the end points + 1. The limit value
of A, (v) as v—w is given by®

N
A)=T] A=~cfp). (1.11)
n=0

Other statements about the location and character of
the zeros can be made. It is readily seen that the roots must
occur in + pairs. Further, Case® showed that if ¢ < 1 that
the zeros of A_(v) are real. Moreover, Case showed that if
1 —¢f,»0 for n = 1,3,5,..., the zeros are all simple and are
either real or purely imaginary. However, the determination
of the number of zeros of the dispersion function remains
relatively primitive. The number of zeros 2M of A, (v) can
be obtained from the argument principle. The contour C in
Fig. 1 and a contour at infinity encloses the cut plane. Be-
cause A, (o) is a constant, the number of zeros of the dis-
persion function is given by the change in the argument of
A, (v) along C as the contour is collapsed (with p—0) onto
the real interval ( — 1, + 1). This procedure yields

M= (1/mA; Arg AY (p), (1.12)

where A Arg A" () represents the change in the argu-
ment of A" (u) as p varies along the directed line from
—1 to + 1. Since the imaginary part of AJS (u),
pe( — 1, + 1), is a polynomial of at most degree N + 1,
then M<N + 1. For linear anisotropic scattering (N = 1),
the number of pairs of zeros of A, (v) can be shown to be
either one or two depending on the values of ¢ and f,. The
proof of this last statement is essentially an algebraic one. As
will be seen below, the enumeration of the pairs of zeros of
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A. (v) becomes more difficult as the order of the scattering
increases. For N> 4 and for a given value of ¢ and a set of
{f.}, the enumeration of the pairs of zeros of the dispersion
function in some kind of “closed form” is an unlikely possi-
bility and resort to some sort of numerics is inevitable. The
big problem with a numerical evaluation of the change in the
argument of a function is that it is easy to lose track as the
argument unfolds. Thus an independent evaluation of the
number of pairs of zeros would be useful.

The main result of this paper provides such an algebraic
test for the number of pairs of zeros of the dispersion func-
tion. The proof of this test is based in part on the observation
that the function 7, (1) can be regarded as a polynomial in ¢
of order N* =N — K, where K is the number of f,,
0 < n <N, that are zero. It will be shown below that the N *
zeros of ¥, (1) are all simple and real. Denote the nonposi-
tive zeros of ¥, (1) by ¢,”, p = 1,...,P, and the positive zeros
bye;”, ¢ =1,...,Q, with P + Q = N *. Order these zeros ac-
cording to

(1.13)

If0<ci, <c<cit, , foragivensetof { £, }, then the num-
ber of pairs of zeros of A_(v) is k + 1. A similar idea was
proposed by Dawn and Chen’ but their analysis is not as
complete as the one presented here.

The proof of the preceding test is contained in the re-
maining sections of this paper. It proves convenient in that
proof to make the change of variables c—1/s. This change is
made in Sec. II. The essential points of a mapping between
the s plane and the v plane are also made in that section. The
proof of the test given above is contained in the main
theorem proved in Sec. III. Concluding ancillary remarks
about the character of the zeros of the dispersion function
are made in Sec. IV.

Cp <CF_y < = < <eff <6 < - <eg.

Il. MAPPING BETWEEN THE v PLANE AND THE s PLANE
The dispersion function can also be written in the form
A (V) =R, (v) —evy.(v)Qo(v), (2.1)
where here and in the subsequent analysis Q, (v) is the nth-
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order Legendre function of the second kind and R (v) is a
polynomial in v and ¢. With the change of variables ¢ = 1/s
an auxiliary dispersion function A(v,s) is defined by

A(vs) =s""1'A L (V)
= R(v,s) —vy(%$)Qo(V)

=5Vt 4 VA, (V) + -+ Ay (v),  (22)

where
R(vys) =s"" TR, (v)
=SV LB (V) ot bye (V) (23)
and
(%) =57y, ()

=5"a,(v) + 57" " la,(v) + - +ay. (V).
(2.4)

Here b;(v) and a,(v) are even polynomials in v only and
A; (v) is an analytic function on v C\ [ — 1, + 1]. Obvious-
ly, A(v,s) and A, (v) have the same zeros in the v plane for
570 (c# o0 ). The object is to consider A(v,s) as a complex
function of two complex variables and use the implicit func-
tion theorem to study A(v,s) = 0.

In particular, A(v,s) for fixed v can be regarded as a
polynomial in s and its zeros can be investigated. For exam-
ple, with ¥ = o, Eq. (1.11) can be written in the present
notation as

N
A(w,s) = [[ Ga(s), (2.5)
n=0
where
Gn (S) = (S _f;n); lff;l 560’
—1, iff, =0. 2.6)

Thus the point v = c0 mapsby A( o0,s) = 0into N * + 1real
points, the nonzero f, in the s plane. These points are, of
course, distinct if the £, are all different. Consequently, it
will be assumed for simplicity that all the nonzero f, are
distinct. However, since A(v,s) and y(v,s) are also polyno-
mials in the £, , the main results obtained here also follow for
nondistinct £, by continuity. Other points in the v plane also
map into real points in the s plane. To this point consider the
following.

Lemma 1: If vieR\[ — 1, + 1], then the roots of
A(vy,s) =0 are all real.

Proof: The proof of this lemma follows from using the
dispersion function in a form written by Inénii,?

AW)=W+1) [QN+ thy(v) — QN(V)hN+1,c(V)]-
Q2.7

If x, <n of the £, are zero and
h, (v,s) =5"h, ;s (v), 2.8)
the recursion formula for the 4, (v,s) can be written as
(n+ Db, (%8) + 15", _, (v,5)
= (2n + 1)G, (s)vh, (v,s),
with
h_1(vs) =0, ho(vs) =1,

(2.9)
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and

8y =Kpy1 — Ky 30.
Thus the auxiliary dispersion function A (v,s) takes the form
A(s) = (N+ 1) [Qy15h, (v,s) — On(V)Ay, (7,8} ].

(2.10)
Let voeR\ [ — 1, + 1] be fixed and consider
A(vo,s) = Q41 (Vo)shy (Vo,8)
— On(Vo)hy 4 1 (ves) = 0. (2.11)

Note that Ay (v(,s) and hy_ , (vo,s) cannot vanish for the
same value of s, for if they did, then the recursion formula
would yield Ay_,(v5) =0, which would imply
hy _ 5 (vg,s) =0, etc. This would eventually lead to the con-
tradiction Ay (v4.s) = 0. It can be easily shown that

n—1

0 == T Gn+D[ -G, O,  (212)
n j=o

Thus A(v,,0) does not vanish for vieR\[ — 1, + 1]. Now
let s, and s, be nonzero roots of A(v,s)=0. Equation
(2.11) then yields

$:hn (VoS )y 1 (Ves$1) = 51y (VouS 1 ) Ay o 1 (VgeS,)-
(2.13)

Rewriting Eq. (2.9) for s=s,, v=1v, and then for
s =£§,, v= v, and combining the results in a familiar fash-
ion yields
(N + 1) [s:hy (Vo) n o 1 (Vousy)

— S1hy (VoS )y 11 (V0i52) 1/ (815,

N ovo(2n + 1)f,h, (v,51) b, (vo,8;)
=(51—32)z 0 /. Ko_ll o%2)
n=0 (sy8)™
(2.14)

Because &, (v,,s) for fixed voeR\[ — 1, + 1] is a polyno-
mial in s with real coefficients, if 5, is a zero of A(v,,s), then
80 is 5,. Thus let s, =75, and employ Eq. (2.13) to obtain

hn (Vo’sl)

LAk

2

N
Im s, E (2n + 1)f, =0. (2.15)

n=0

Kn

5
Hence, for example, if all of the £, are non-negative, then the
sum in the last expression is positive and therefore s, real.

To pin down the general situation consider the relation
given by Bowden et al.,’

Al/s (V)Pn (‘V)

v (TR
2J0 v—pu
N o Qm+ Df, P, (uwh, (v.s)
szo SK,,,+1 d”

+ A, (v,$) /5. (2.16)
Now let v = v, and s = 5, be defined as above. Multiplying
Eq. (2.16) by (2n + 1)f,h, (v,5,)/5" and summing on n
yields

_V_o_f“ i (zn+1)f..Pn(;t)hn(V<»s1>'2 dp
231 —1 n=90 s';" k=%
N h 2
+3 @n+ 1y, ————"(?’s')l =0. 1
ne=0 5"
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Here the fact that 4, (v,,5,) = h,, (vy,5,) for v, real has been
used. For voeR\ [ — 1, + 1] the integral term in Eq. (2.17)
will not vanish; thus Eqgs. (2.15) and (2.17) state that
Ims, =0, i.e, s, is real. This completes the proof of the
lemma. To show that these zeros (for fixed v,) are simple,
consider the following.

Lemma 2: If vieR\ [ — 1, + 1] and A(v,,s,) =0, then
IA(vy,80)/Fs5#0.

Proof: Let H,(v,s) =sh,(v,s). It follows from Eq.
(2.10) that

dA(v,s)
s

OH, (v,5)
Js

by, 1 (v,s) ]
Js '

=(N+ ])[QN+1(V)

—Ov)

If now both A(v,,s,) = 0 and dA (v,,s,)/ds = 0, then Egs.

(2.11) and (2.18) imply that

OH  (v4,5,)

Js

ahzv+ 1 (VosSo)
Js )

Dividing both sides of Eq. (2.14) by (s, — s,) and taking the

limit s,—s, = 5, where s, is a zero of A(v,,s), give

(N+1) [HN(Vo»So) ahN+1a§VoJo)

7"
OH \; (v,S0) ]
ds

(2.18)

hN+ 1 (VosSo)

= Hy (vs8) (2.19)

— hy (veS0)
2

h, (VosSo) (2.20)

N
=3 @n+ 1),
n=0

S
Therefore from Eq. (2.19) a necessary condition for
A(vg,5,) and JA (v,S,)/ds to vanish is that the right-hand
side of Eq. (2.20) also vanish. The proof of the lemma is
completed by recalling from Lemma 1 that the right-hand
side of Eq. (2.20) does not vanish for v,eR\[ — 1, + 1].

There are N* + 1 = N + 1 — K nonvanishing roots of
A(vy,s) =0for voeR\ [ — 1, + 1] that are real and simple.
Denote these roots by s§%,5¢%,....s$¥ . From the implicit
function theorem there are neighborhoods, say N(v,) and
N, (s§”), such that the equation A(v,s) =0 has a unique
root S;(v) in N, (s§”) for any v in N(v,). Further, each
function S (v) is single valued and analytic on N(v,) and
satisfies the condition S; (v,) = 5.

The immediate objective now is to continue the S; (v) to
the right (left) half complex plane cut as described below.
That each of these functions can be continued along any line
in the v plane that avoids thecut [ — 1, + 1] and zeros of the
discriminant of Eq. (2.2) is clear. The discriminant of Eq.
(2.2) can be written in the form

M,
D(v) = Y B.(MI[vQe(M]",

n=0

(2.21)

where M, is finite and 3, (v) is an even polynomial with real
coefficients. Thus D(v) is analytic on the complex plane cut
along [ — 1, + 1], has at most a finite-order pole at infinity,
and has the limits
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gy e 8 tanh—' LN (222)
DE(p)= Y B.(p)|p L 2.
n=0

on the cut ( — 1, 4+ 1). It is readily seen that the real and
imaginary parts of D £ ( ) have only a finite number of
zeros for ue( — 1, + 1). A straightforward argument prin-
ciple calculation similar to the one about the contour C men-
tioned in Sec. I shows that the number of zeros of D(v) is
finite. Because of the assumption that nonzero f, are dis-
tinct, D(v) does not vanish at infinity. Further, since
D(v) =D( —v) and D(¥) =D(v), if v=+' is a zero of
D(v)soarev= —+v andv=7¥. Let

D = {;i ID(;l) = O}a

where +§o, + &y, §, =0 are points on the imaginary
axis with _ [{o|>[5i]> = >[5,] and  +&, 4,
+&,.4 t6,.,aretherestofthe points of . (Note that
p could be equal to zero.) Now cut the v plane by joining
+ $o» + §15--08, in the upper half plane with a straight line,
similarly joining — §o, — £),...,§, in the lower half plane,
joining £, =0, £, 16, , With a series of straight lines
in the first quadrant, making similar joinings in the remain-
ing quadrants, and finally adding the original cut along
(—1,+4+1).

Each of the S; (v) can be analytically continued to the
right (left) half complex plane cut as described above so
that, according to the monodromy theorem, each function
will be single valued and analytic in the right (left) cut plane.
Each function S, (v) can be continued from the right half
plane to the left half plane by considering the regions
|Im v| > |§,|. Thus each S; (v) so continued has the property
that §;(v) =S§;(—v). Since S§;(v) s real for
veR\ [ — 1, 4 1], the reflection principle yields the addi-
tional property that S, (¥) =-S_'j (v). Since S;(v) is contin-
uous across the imaginary axis for |Im v|> ||, the two
properties listed show that S; (v) is real if v lies on the imagi-
nary axis and |Im v| > |,|. Most importantly, of course, is
the property that A[v,S;(v)] = O for every v in the plane
cut as described. The functions S; (v) will be labeled accord-
ing to lim,_ _S;(v)=/f,, where f, =/f,=1 and f,,
Jj=12,...,N *, are the nonvanishing expansion coefficients.

To look at the behavior of the S;(v) on [ — 1, 4 ] it is
helpful to consider the following lemmas.

Lemma 3: If vieR\( —1,+ 1), then the roots of
¥(vg,s) = 0 are all real.

Proof* As demonstrated by Inénii,® the recursion for-
mula for P, (v) and h,, (v,s) can be used to write

v(v,s) = (N+ 1) [Py, (V)shy (v,s)
—Py(Why . (v,9)]. (2.24)

This expression is entirely analogous to Eq. (2.10) with
Q, (v) replaced by P, (v). Thus letting vieR\( — 1, + 1)
be fixed, letting s, be a nonzero root of ¥(v,s) =0, and
following the proof of Lemma 1 yields

(2.23)

h 2
2 o) |y, (2.25)

N
Im s, z (2n + 1)1,
n=0

So
Substituting v = v, and s = s, defined as above into Eq.
(2.16), multiplying the resulting equation by

1627 J. Math. Phys., Vol. 27, No. 6, June 1986

(2n 4+ 1)f, b, (v0:S0) /55", and summing on n gives

2

&J’H N (2n+ 1)f, P, (p)h, (veSo) |* dp
255 J-1 |a=0 5y K=Y
N h 2
+ 3 @n+1y, _(‘ﬂ —o0. (2.26)
n=0 So

Note that the integral in Eq. (2.26) is well defined for v, = 1
and for v,eR\ ( — 1, + 1) the integral term does not vanish.
Thus Egs. (2.25) and (2.26) state that Im s, = 0, i.e,, 5, is
real.

Lemma 4: If viR\ ( — 1, + 1) and s, is a nonzero root
of A(vg,s,) =0, then JA(vy,s,)/Is #O0.

The proof of this lemma is completely analogous to that
of Lemma 3 and the details will be omitted.

It can be shown that g, (v) in Eq. (2.4) can be written as
2V _o@n+1)f,[P,(»)]* It will be assumed that
a,(1) #£0; this is equivalent to f(1,1) > 0in Eq. (1.2). How-
ever, again a,(v) is a polynomial in the f, and the case
ay(1) = 0 can be included by continuity.

The equation y(v,,s) = 0forveeR\( — 1, + 1) has N *
simple real nonvanishing roots. In particular denote the
roots of y(1,5) = 0 by £,,&,,...,6 v« With the ordering of the

roots given by the following.
Lemma 5:
livfll S;(v)=§;, j=12,.,N* 2.27)
Proof: Let
A'(vs) = R(vs)/[vQy(¥) ] — ¥ (v5). (2.28)

For fixed v# 1 the zeros of A(v,s) and A’(v,s) coincide. For
v =1, it is obvious that A’(v,s) vanishes at the zeros of
7(1,5). Thus if S} (v) is a zero of A’(v,s) then
IS} (V) =85;(V)|=|S; (v) =& +§ — S;(v)|
=0, v#1. (2.29)
Therefore
IS;(v) —&|=1S; (v) —§|, v#L (2.30)

The proof is completed by noting that the right-hand side of
the last equation vanishes in the limit v—1. A similar calcu-
lation leads to the following.

Lemma 6:
lim So(v) = lim £, (), (2.31)
where
Eo(v) = —bi(v) —ag(v)vQe(v)
+ a,(v)/ay(v). (2.32)

with the polynomials a, (v) and b, (v) given by Egs. (2.3)
and (2.4).

Proof: Let

A" (vis) =5 + NZ b..+1(V)a..(v)VQo(v),

n=0 Sn

and note that for v# 1, the zeros of A (v,s) and A” (v,s) coin-
cide Let S;(v) be a zero of A"(v,s), ie,
A"[vS§ (v)] =0, and note that

(2.33)
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1So(v) =S¢ (V)]

= |S0(V) —&o(W) +&(v) — S5 (V)]

=0. (2.34)

Using the same argument as in Lemma 5 completes the
proof. Note, for example, that as v—1 along the real axis that
£o(v)—oo. Furtherif £ 5~ () and €5 () are the limits of
£o(v) as v—ue( — 1, + 1) from the upper and lower com-
plex plane, respectively, then

img s (p) = + o Fimag(1)/2=5 ¢ (2.35)
’l,—b

Let A*(u,s) and A~ ( u,s) be the limits of A(v,s) as
v—ue( — 1, + 1) from the upper and lower half complex v
plane, respectively, and consider for fixed x4 the roots of
A*(u,8) =0.Thereare N * + 1 such roots, some of which
may be multiple roots if z is a zero of the discriminant of
Af(pus). LetS* (u),j=01,..,N*, bethefunctions gen-
erated by such roots as u takes on values along ( — 1, + 1).

Lemma 7: Each function §* is continuous on
( — 1’ + l)'

Proof: The proof will be illustrated for S j+ (). The
prooffor.S;~ () follows in an analogous manner. Let 5, be
aroot of A* ( ugs) = 0, whereuye( — 1, + ) isnot a zero of
the discriminant of A* ( u,s). Further, let K, be a circle of
radius € > O centered on s, so small that A ( x,,) contains
no zero except at the point s, itself. Since A+ ( yq,8) is analyt-
ic inside of X, let % > 0 be the minimum of |A™ ( x,s)| on
K. For fixed s, A* ( u,s) is a continuous function of  on
( — 1, 4+ 1). Therefore, choose a real interval A so small that
|A™* (pgps) — A" (1,8)| <7 for all ueA. Thus according to
Rouche’s theorem

AT (p,s) =AY (poss) + [AT(,8) — AT (ppws) ]

(2.36)

has only one zero inside K, for any fixed but arbitrary peA.
If A* (ug,s) = O has a k-fold multiple root, then repeating
the argument above shows that the circle X, encloses k zeros
of A*(u,s) for peA. Thus each §;* (u) is continuous on
( — 1, + 1) and at each zero of the discriminant of A* ( u,s)
that corresponds to a k-fold multiple root of A* ( u,s) =0
(e.g., # =0) k of the functions §;© () take on the same
value. The labeling of the functions S+ ( u) is given by the
following.

Lemma &: The limits of §;(v), j=0,.,N* as
v—ue( — 1, + 1) from the upper and lower complex plane
are ;" () and §;~ (u), respectively.

Proof: The proof of this lemma is similar to Lemma 7
and again the proof will be illustrated for S;* (). The
proof for §;~ () follows in an analogous manner. As in
Lemma 7, let s, be a root of A™(ugs) =0, where
1o — 1, + 1) isnot a zero of the discriminant of A™ ( ,5).
Againlet K, be a circle of radius € > O centered on s, so small
that A™ ( p,,s) encloses only the zero at s, itself. Let 7 > O be
the minimum of |A™* ( t,,5) | on K. Finally let K; be a circle
centered on u, so small that |A™* (ue.s) — A(v,s)| <7 for
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any v with Re v> 0 inside K. Thus again from Rouche’s
theorem

A(s) = AT (o) + [A(vs) — A" (pes)] (2.37)

has only one zero inside X, for any fixed but arbitrary point v
in K; with Re v> 0. If A™* ( 14,5) = 0 has a k-fold multiple
root at s,, then the circle K, will contain & roots of A(v,s).

il. MAIN THEOREM

Consider the contours generated by s=S5;(v),
Jj=0,1,..,N*, as v varies along the contour C of Fig. 1 as
that contour is collapsed (with p—0) onto the real interval
( — 1, + 1). These contours are in fact the contours I'; gen-
erated parametrically by s =8 * (u), j=0,1,.,.N* aspu
varies along the real interval ( — 1, + 1). Note that
SH(—w)=8;"(u), $;* (p) =S8, (—p), and that
each of the contours begins and ends at the limit points given
by Lemmas 5 and 6. Thus the contour T, starts, say, at £;,
varies continuously in the s plane as y varies from — 1to 0
along the top of the cut, passes through zero at 4 = 0, traces
out its complex conjugate as u continues to vary from O to
+ 1 along the top of the cut, and finally retraces itself as u
varies from + 1to — 1along the bottom of the cut. That the
contours do not cross the real s plane axis except at s = O and
s=¢§;, j>0,isclear. Forif §;* (1,) = 5,€R for some value
of poe( — 1, + 1), that would imply that A™ ( gq,8,) =0in
contradiction to the results cited in Sec. L.
Thecontours I';, j = 1,...,N *, are closed. (The contour
I', can be regarded as closed if it is regarded as being closed
at infinity.) The contours I'; have positive (counterclock-
wise) orientation. Since Im §;* () #0for0< |l <1, itis
sufficient to show positive orientation of the I'; by demon-
strating for some u, with O <u, < 1 that

ImS;* (u) <0, if§;>0,

3.1
>0, if; <O. G.h

Note first that Im S5 () >0, since
IimIm S (p) = —ay(l)n/2, (3.2)

pu—1

withay(1) > 0. If A ( u,s) is evaluated from Eq. (2.2), it is
easy to see that

limIm A*(us) =y(1,5)n/2.

p-1
Now order the zeros of ¥(1,s) according to

gm, >§m2 > e >§"'Q>0>§"'Q+l > o >§m~.’

(3.3)

(3.4)
and choose 1> > 0 so that either

Em,. <ReST (po) <én, if1<g<Q,

0<RCS,:; (#0) <§’"Q’ lfq'—_Q’

(3.5)

§MQ+| <RCS,:; (.uo)<0’ lfq=Q+ 1’ or

fm,, <ReS,:'q (o) <§m.,_1’ ifN*>¢>Q+ 1.
Ifs= ReS,:,'q (Uo)s ¢=1,...,N*, then
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A+[,u,ReS,jq (po)] = —ImS (yo)[ReS,,Tq (o) —Re Sy (p)]

j=1
j#Em,

where T'( p,1,) is a function such that T'( g.uy)—0asu—1.
Thus for u sufficiently close to 1, Eqs. (3.3) and (3.6) yield

sgn(A* [p,Re S5 (1) ])
N‘
X I (ReS ., (po) —ReSf(,u))]
=0
jj#mq
=sgn(y[LReS ; (1o)])- 3.7
Moreover, since lim,  _ y(1,5)—, then sgn[y(1,s)]
=sgn[( - 1)?]if¢, <s<§,, . Thus if Re S . (o) is
chosen by Eq. (3.5), then Eq. (3.7) gives
sgn[ — (= 1)*Im S, (4]
=sgn[(—1)7], if§, >0,
=sgn[( —1)?*"], if £, <O 3.8)

Theorem: Let I(I';) and E(T;) represent the interior
and exterior of the contours IT';, j = 0,1,...,.N %, respectively,
and let

P—1 N*

s n I(T,) n E(T,). 3.9)
j=0 j=P 4
Ims

—+- irae(1)/2

.
x[ 1 [Re S (o) —ReS; (0] + T(u,uo>],

(3.6)

r

In other words, let s lie in the interior of P of the contours I,
and the exterior to all the other I';. The number of roots of
A(vs) =0is 2] N,,, where N, is the index of s with
respect to I';. Further, if s is real and satisfies Eq. (3.9) then
N, =1and M =P+ 1, ie., just equal to the number of
contours I'; in which s lies.

Proof: As indicated in Sec. I, A( ,s) is a constant and
the number of zeros of A(v,s) is given by the change in the
argument of A(v,s) along the contour C in Fig. 1 as the
contour is collapsed (with p—0) onto the real interval
( — 1, + 1). This procedure yields [cf. Eq. (1.12)]

M= (1/m)Ac Arg A" (u,s), (3.10)

where A Arg A ( u,s) represents the change in the argu-
ment along the directed line from — 1to + 1. Thus

Ne=
M=AcArg [[[s—S,;" (w)]
j=0

N* P—1
= ZOAC Arg[s—St ()] = .20 N, (3.11)
ji= j=

If seRCI(T,,) then N, =1 since I, does not cross the
realaxisfor0<s <&, . Of course if s does not lie inside of any

o

9

FIG. 2. Contours I'y, I', and I', for f; = 0.2
Re s and f, = 0.05. Scale of I'; reduced by factor
of 6 and scale of I", enlarged by factor of 2.

|

~—imae(1)/2
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Ims

- iwag(1)/2
° T,

FIG. 3. Contours I',, I',, and T, for
fi= —0.1 and £, =0.05. Scale of T, re-

Re s duced by factor of 5 and scale of I', enlarged
by factor of 2.

}

- —iwae(1)/2

of the contours then M =0, i.e., A(v,s) has no zeros. The
number of zeros of A(v,s) is intimately connected to the
zeros of ¥(1,5), i.e, tothe £, j=1,.,.N*

Corollary: If seR satisfies 0< £, , <5<&,,, where the
&m, are ordered according to Eq. (3.4), then the number of
pairs of zeros of A(v,s) isj + 1. Further, if ;" = 1/£,, , then
the test of Sec. I follows directly.

For a numerical illustration of the mappings
s=8;% (u), j=0,1,..,N*, consider Figs. 2-5. These

Hlirag(1)/2 | P

L

curves were generated for the case N =2 by solving
A*(u,5) = 0for s as p varies from O to + 1. For a numeri-
calillustration of the roots of ¥( 1,s5), consider Table I. In this
calculation

N
flppu) = 3 Qn+DfS P ()P, (p),  (312)
n=20

where the expansion coefficients are given by the recursion
relation®

FIG. 4. Contours of 'y, I}, and T', for
fi= —0.1and f;, = — 0.05, Scale of ', re-

¥
N Cimay(1)/2
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Re s duced by factor of 3 and scale of ", enlarged
by factor of 4.

R. L. Bowden 1630



FIG. 5. Contours I'yand T, for f; =0 and

Res J> = 0.1. Scale of T',; reduced by factor of 3.

Ims
-+ iwa,{1})/2
L,
T,
—+ ~iwa,{1)/2
y __J+1 [ n j=1 4 i1
= Gamrnlan—n &

n+1 ., ]
+2n_+_3f,,+1 , (3.13)
with f} = 1, j=0,1,..,and f, = 0if n>j. The calculations
in Table I were made with J = 50. Other numerical results
agree with the azimuthally symmetric results reported by

Shultis and Hill."*

IV. CONCLUDING REMARKS

It seems appropriate to conclude with a couple of re-
marks about the nature of the zeros of A(v,s) and y(v,s).
Several years ago Kuser'” pointed out that for the case

TABLE 1. Zeros of y(1,s). The last row is the reported number of pairs of
zeros of A_(v) for c = 0.95 (see Ref. 10).

Order of scattering N

4 6 8 10 15
3.0765 5.0607 6.8243 8.0824 9.2031
1.0388 1.6213 2.1600 2.5665 2.9677
0.6067 0.8576 1.1052 1.2990 1.5039
0.4645 0.5854 0.7131 0.8201 0.9402
0.4683 0.5405 0.5986 0.6710
0.3396 0.4422 0.4893 0.5332
0.3265 0.3920 0.4457
0.2057 0.2842 0.3491
0.1860 0.2554
0.1047 0.1762
0.1147
0.0701
0.0399
0.0206
0.0091

2 3 4 4 4
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N = 2 that the zeros of A_ (v) could be complex. The advan-
tage of the present analysis is that it points out that the zeros
of A(v,s) become complex (even for real s) whenever the
discriminant D(v) has zeros on the imaginary axis. Stated
somewhat differently, the zeros of A (v,s) are mapped via the
S; (v) from the v plane to the s plane and that map is confor-
mal as long as the path in the v plane avoids the cuts as
described in Sec. IL. In particular, the imaginary axis in the v
plane is conformally mapped to the real axis in the s plane as
v marches in from infinity. This conformal mapping is
broken if a zero in the discriminant of A (v,s) is encountered,
resulting with complex zeros of A(v,s). One can quickly
show that this is just the situation for the special case consid-
ered by Kuscer.

Somewhat similar related remarks can be made about
the zeros of ¥(v,s). It has been shown that the number of
zeros of A (v,s) are related to the zeros of (1,5). If the num-
ber of pairs of zeros of y(v,s) (for fixed 5) that lie in the
interval ( — 1, 4 1) is denoted by a, the discussion in Sec. I
indicates that the number of pairs of zeros M of A(v,s) must
be bounded M<a + 1. Further, numerical calculation with
real s not too small (¢ not too large) suggest that M can be, in
fact, just equal to a + 1. To see the reason for this consider
the fact that y(v,s) = 0 generates an algebraic function, say
v(s), each branch of which conformally maps the appropri-
ately cut s plane to the v plane. Note that v({;)

=1, j=1,2,...,N *. The number of zeros of y(v,s) must al-
ways be sufficient to satisfy the main theorem. Thus there is
always a certain branch of v(s) that maps the interval (£;,0)
in the s plane to the real interval ( — 1, + 1) in the v plane,
and that mapping will be conformal (and thus one-to-one) if
the discriminant of ¥(v,s) does not vanish on the interval
(£;,0). Therefore, if the set of expansion coefficients { £, } is
such that the discriminant of ¥{v,s) does not vanish on any
of the intervals (£;,0), j= 1,2,..,.N*, in the s plane, then
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indeed M = a + 1. This is certainly the case for N = 0 and
N = 1. However, one can show quite easily that for the case
N =2, f,<0, and f, <0 that the discriminant does vanish
for s small enough. However, it is apparent that there always
exist values of s greater than the largest zero of the discrimi-
nant of y(v,s) for which the number of pairs of zeros of
A(v,s) is always given by M = a + 1.
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Multigroup transport equations with nondiagonal cross-section matrices
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Multigroup transport equations with nondiagonal cross-section matrices are studied using the
Wiener-Hopf method. Formulas for the solution and the exit distribution are given in terms of the
factorization of the symbol of the Wiener—-Hopf equation. Unlike the formulas for a diagonal
cross-section matrix, these formulas involve derivatives of the H-functions. For the case of two

groups, the H-functions are computed explicitly.

I. INTRODUCTION

Multigroup transport equations with nondiagonal and
possibly nondiagonalizable cross-section matrices have been
proposed as a model of, for example, neutron transport in
reactors.”? In this paper, transport equations with nondia-
gonalizable cross-section matrices are studied by making use
of the Wiener—Hopf method. In Sec. II an integral equation
equivalent to the transport equation is derived along with
expressions connecting the solutions of the integral equation
to the solutions of the transport equation. In Secs. III and IV
we outline the Wiener-Hopf method. In Sec. V the Wiener—
Hopf factorization is constructed explicitly for the two-
group case. For the general N-group problem, we are not
able to construct the factorization; the best that we are able
to do is derive the generalized Chandrasekhar H-equations
and to set up a numerical scheme for computing the H-func-
tions. This work will be published in another paper, where
we consider a more general scattering matrix. Finally, in
Secs. VI and VII we determine the exit distribution and the
solution in terms of the H-functions. In these two sections we
do not limit ourselves to the two-group problem; instead we
consider the N-group problem in anticipation of the above-
mentioned generalization.

Briefly, transport equations with nondiagonal cross-sec-
tion matrices occur when the energy dependence of the cross
section is expanded in terms of orthogonal functions, and
then the method of weighted residuals is applied to deter-
mine equations for the coefficients of the expansion. The
method of weighted residuals is discussed by Stacey' and by
Ames,? where different choices of the orthogonal functions
and the weights are considered and the physical reasons be-
hind the choices are given. If this procedure is followed for
the problem of radiative transfer with the assumption of a
uniform or picket fence model,* then the resulting vector
equation has the form
+1

1
pno, Fxu) + ZF(x.u) =-—2—-C F(xu')dy', (n
—1
where the matrix C is noninvertible. A derivation of these
results can be found in Siewert and Zweifel,* the only differ-
ence being that the cross-section matrix = is no longer neces-

sarily diagonal. If 2 is diagonalizable, then a similarity trans-
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formation will reduce Eq. (1) to the problem considered in
Ref. 4. More generally, Eq. (1) is solvable for the case that
the matrices 3 and C are simultaneously upper triangulari-
zable. In such a case, the problem reduces to a system of
uncoupled inhomogeneous scalar Wiener—Hopf equations.

In the following, the simplest equation of the form (1)
that does not satisfy either one of the two above conditions
will be studied. In particular, the two-group equation de-
fined by

i €12
3y =

1 a‘
, C=
0 1

, (2)
€ C22
will be studied with a#0 and c,,#0. A similarity transfor-
mation can always be applied to set & = 1, but for bookkeep-
ing purposes it is convenient to keep a as a parameter so that
the limit a—0 is apparent. A direct calculation shows that,
for a0 and c,,#0, 2 and C are not simultaneously upper
triangularizable, whence the conditions @ #0, ¢,, #0. In this
paper we will study Eq. (1) with £ and C defined by Eq. (2),
along with half-space boundary conditions given by

F(x,u)—0, x—oo. (3b)
Equation (3b) holds true for each component separately.

Il. AN EQUIVALENT INTEGRAL EQUATION

Equation (1) is studied using the Wiener—Hopf meth-
od. To carry out the procedure, an equivalent integral equa-
tion is sought. If G is defined by

+1

F(xu)du, 4)

-1
then an integral equation for G can be derived analogously to
the one-speed case.’ The result is

G(x) =

G(x) = U(x) +-%—Jm Eis (|]x — 5|)CG(s)ds, (5a)
(]
where
1
U(x) =f e *Erd(u)du. (5b)
0

The function Eiy is defined in terms of the exponential inte-
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gral® and its derivative by
E(z) azE|(2)

0 E\(2)
(5¢)

Once G is known, F can be computed using the formulas
1 oo

X

1
Ei; (2) =f pleT i dy = l
0

F(xu) = — e~ C=9¥eCG(s)ds, p<O,

(6a)
and, for u >0,

F(xu) =e ") + —l—f e~ *—9FeCG(s)ds.
0

2u
(6b)
The matrix-valued function e ~ */* is easy to compute if the
Jordan decomposition of 2 given by
S=I+M, M*=0, N
is used. It is easy to check that

e—xz/y= ' —x/y. (8)

1 ax/,u' .
0 1

lil. THE WIENER-HOPF METHOD OF SOLUTION
Following the standard notation, define the functions
G*and U* by
G(x), £x>0,
i ==
and similarly for U *. With these definitions, Eq. (5a) can
be written as a convolution equation on ( — 0, ), namely

G (x)+ G (x)
+ oo

—U*(x) +% Eiz (Jx — 5|)CG * (s)ds. (10a)

The Fourier transform of Eq. (10a) yields
WG *(4) +G~(A) =T+ (A). (10b)

A
Here the Fourier transform of a function F is denoted as F,
where

A + e

F(A) =f e F(x)dx.
The matrix-valued function W is the symbol of the Wiener—
Hopf equation (10a) and is given by
W) =1—((1/A)tan" ' A)C+ [1/(1 + A2)IMC. (11)

The nilpotent matrix M has already been introduced in Eq.
).

IV. FACTORIZATION OF THE SYMBOL

The crucial step in the Wiener—Hopf method is the con-
struction of the Wiener—Hopf factorization of the symbol.
This paper will only consider the canonical Wiener—-Hopf
(WH) factorization. A canonical WH factorization is a pair
of functions W * such that

WA)=W (W), AR, =Rt »}, (12)

where the matrix function W * (W ~) is analytic in the open
upper (lower) half-plane, and continuous and invertible in
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the closed upper (lower) half-plane. As in the one-speed
case, a factorization of the form (12) does not exist for all
possible choices of 2 and C. In fact, in the one-speed case, a
canonical factorization exists only for ¢ < 1 (see Ref. 5). A
necessary condition for the existence of W * is that W(A) is
invertible for AR, i.e., det W(A1) + Ofor AeR . For this
reason one should study the zeros of det W. Explicitly,
det W is given by

det W(A) =1—tr C[A ~"tan~ ' A] + ac,, [1 +42] 7L
(13)

Here, tr C denotes the trace of C, and the assumption that
det C = 0 has been used. Observe that the dispersion func-
tion has branch points at + i. We will always choose the
branch cuts to be the lines z = it, |t | 1. Therefore, the dis-
persion function is analytic in the region C\{zeC: z =i,
|t|>1, teR}. Note that

lim det W(4) =1, (14)

holds inside the region of analyticity. Furthermore, det W
satisfies the symmetries

[det W(A)]* =det W(A*), (15a)
det W( —A) =det W(A). (15b)

The superscript * denotes complex conjugation. These sym-
metries imply that A, is a zero of the dispersion function if
and only if both A ¥ and — A, are zeros of the dispersion
function. Therefore the dispersion function must have an
even number of zeros. The symmetries [Egs. (15a) and
(15b)] along with the behavior of det W at infinity [Eq.
(14)] allow one to compute the number of zeros of the dis-
persion function by computing the change of the argument
of det W along the branch cuts, the so-called Nyquist meth-
od,’ just as is done in the one-group case.> We apply the

|4 |,

Im Z

-
Re Z
FIG. 1. Contour for computing A arg det W.
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aC21

four real
zeros

no zeros four complex

zeros

two real
two complex
zeros

trC
two imaginary
zeros

two real zeros

FIG. 2. The zeros of det W in the tr C, aC,, plane.

argument principle to the contour in Fig. 1. This problem
divides into three special cases: (i) tr C =0, (ii) ac,, =0,
and (iii) both tr C #0 and ac,,#0. The case tr C=0 is
solved easily by algebra, and the dispersion function for
ac,, = 0isidentical to the one-group dispersion function so
that the number of zeros is known.” These results are sum-
marized in Fig. 2. Case (iii) requires special attention. Un-
like the one-group dispersion function, i.e., the case
ac,; =0, the dispersion function now has poles at the
branch points due to the term ac,,[1 +42]~" [see Eq.
(13)]. For this case, the change in the argument when
rounding the branch points is now important. For this rea-
son, the change in the argument of the dispersion function
(denoted by A arg det W) along the contour in Fig. 1 will be
considered in the limit as € and &10. First we study
A arg det W along the straight lines ", by taking the limit
€10 while keeping & a constant, then we study A arg det W
along the circle C; by taking the limit as §10. Along the lines
I, the real and imaginary parts of the boundary values of
det W are given by

. trC 1+y| ac,,
Redet( 40 =1 1n| s
edet( +0+iy) % 1_y+1_y2
(16a)
Imdet W(+0+iy)= + (mtr C)/2p. (16b)

[Note that Eq. (16b) proves that det W is nonvanishing on
the contour I' as required by the argument principle.] With
these formulas, the Nyquist diagram for the contour I', can
be sketched; for the case ac,, >0 and tr C> 0 the result is
shown in Fig. 3. The diagrams for the other possible choices
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det W(=)

contour of T, contour of C{S

FIG. 3. Nyquist diagram for aC,, >0and tr C>0.

of signs of ac,, and tr C are similar. To complete the Nyquist
diagrams, the contour C; must now be considered. Along
the C;, the pole term (1 + A %) ~! dominates, and the con-
tour approaches a circle at infinity as §10. With this informa-
tion, the Nyquist diagrams can be sketched (see Fig. 3), and
the number of zeros of the dispersion function can be de-
duced. Now that the number of zeros of the dispersion func-
tion is known, the remaining task is to determine whether
the zeros are purely real, purely imaginary, or neither. The
graphs of the real and imaginary parts of the dispersion func-
tion are easy to sketch, so it is easy to determine if the disper-
sion function has a real zero. These results are also summar-
ized in Fig. 2. Thus we can conclude that W(4), AeR_, is
invertible for 1 + ac,, >tr C, and tr C> 1. As we previously
mentioned, these conditions give a necessary condition for
the existence of a WH factorization. In the next section,
these conditions will be shown to be sufficient by explicit
calculation of the factorization of W.

V. CONSTRUCTION OF THE WIENER-HOPF
FACTORIZATION

The matrix valued function to be factorized is
WA)=I— (A "tan~'A)C+ (1+A%)~'MC;  (17)
the matrix M has been defined in Eq. (7). In general it is not
known how to construct the Wiener-Hopf factorization of
matrices, but Cebotarev® has shown how to factorize any
upper triangular matrix. The matrix (17) can be made upper

triangular by a similarity transformation with constant ele-
ments. One possible transformation is given by

S=
ey Ollo 11” (18a)
where
A=cy,(trC)7Y, iftr C #£0,
B. L. Willis and C. V. M. van der Mee 1635



and

A=0, iftrC=0. (18b)
The matrix S is always invertible, because det S = — ¢,
which is nonvanishing by assumption. The particular choice
for S has been made with forethought, so that the trans-
formed matrices MC and C are especially simple. Explicitly
the transformed matrices are

0

ST+ M)CS= , trC=0, (19a)
0 acy
and, for tr C #0,
0 —ac(trC)!
S“(I+M)CS=| aca (tr €) (19b)
0 tr C+ ac,,

The transformed matrix .S ~'CS is given by the same expres-
sion, but with @ = 0. It is tempting to think that the similar-
ity transformation [Eq. (18a)] applied to the original equa-
tion will result in a similar simplification, but this is not the
case. The reason is that although C and MC are simulta-
neously upper triangularizable, C and ¥ are not.

The Wiener-Hopf factorization now can be computed.
If S ~'WS is denoted by W, then

~ 1 K(4)
W= ’0 det W(A) |’ (202)
where
K(A)= —cyd ~'tan™'4, trC=0, (20b)
K(A)= —ac,,(rO)"' (1447, trC#O0.
(20c)

The function W is an upper triangular matrix function of
second order and the procedure for getting its Wiener-Hopf
factorization when it exists has been developed by Cebo-
tarev.? Here we follow the method of Ref. 9. First we note
that the factors of an upper triangular matrix can be taken to
be upper triangular, so we set

W) =X(A)Y (L), (21)

with X (Y) analytic and invertible in the lower (upper) half-
plane. If the elements of the matrices X and Y are denoted by
X; and Y}, respectively, then the following system of equa-
tions results when Eq. (21) is substituted into Eq. (17) and
the corresponding matrix elements are equated:

1=X,Y),, (22a)
1—(rC)A " "tan™ ' A +ac, (1 +42%)27!
=X22(A) Yy (1), (22b)
and
— (€ —AtrO)A "'tan" ' A —o0c A(1 +42) 7!
=X (A Y1, (A) + X, Y5, (A). (22¢)

These equations do not uniquely determine X and ¥, since
XU and U 'Y satisfy Eqgs. (22a)—(22c) whenever XYand Y
do, where U is any invertible matrix. However, it is consis-
tent to impose the conditions

Xj(0) =Y;(0) =6y (23)
With these conditions, Eq. (22a) uniquely determines X,
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and Y, to be

X11(4)=Y11(/1)=1, (24)
while the solution to Eq. (22b) is given by
X,,(1) = f.exp[-—l—TJ-+ ) +1/2Mdz] , (25a)
2 —wtin z2—A
where
B(z) =In[1 — [(tr C)/ z]tan"' z + ac,, (1 + 22) 1)
(25b)

The expression for Y,, is the same, except that the limits of
integration are replaced by « —}and — o — i/2. Finally,
we determine Y, and X,,. To do this, divide Eq. (22c) by
Y,,, and define the left-hand side of Eq. (22¢) to be L(A).
Then

L(A)/Yzz(/i) = le(/l)/Yzz(ﬁ) +X12(/{)- (26)

The left-hand side of this equation is known, while the right-
hand side is the sum of two functions, one analytic in the
upper half-plane, the other one analytic in the lower half-
plane. To solve for Y, it is only necessary to write LY ;; ! as
the sum of two functions:

L(A)/Yp(A) =L (A) +L ~(4), (27)

with L * (L 7) analytic in the upper (lower) half-plane.
Therefore

1 (7277 L(2)/Y(2) iz,

LtT(A)=— 28

@ 2mi ) — o —ir2 z—A (282)
+ o0 +i/2
L-)=- L@/ Y@ 4 (28p)
2miJ— o +in2 z—A
Now with the definitions
Y,(1) = Y (A)L *(4), (29a)
X, (A) =L~ (4), (29b)

the matrices X and Y have all the properties required of a
WH factorization.

VI. THE EXIT DISTRIBUTION

Once the canonical Wiener-Hopf factorization has been
computed, an expression for the exit distribution, i.e.,
F(O,u) for u <0, can be written in terms of the factors of
W(A). Unlike for the one-speed case, the exit distribution
will involve derivatives of the factors of W(1/i4). The meth-
od followed in this section parallels the one given by van der
Mee. ' First, the exit distribution for the two-speed problem
defined by Eq. (29) will be derived; then the formulas will be
generalized to the N-group problem.

Following Gohberg and Krein,” there exists a resolvent
kernel ¢( -, - ) so that the general solution to the Wiener—
Hopf equation

G(x) = f K(x —y)G(»)dy + Utx) (30a)
(¢]
can be written as
6(x) = Ux) +f Y YU, (30b)
0
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and the general solution to the transposed equation

G(x) =f G(PIK(y — x)dx + U(x) (31a)
0
can be written as
G(x) = U(x) +f U7 px)dy. (31b)
0

Note that the resolvent kernels for Eq. (30a) and Eq. (31a)
are identical. Returning to Eq. (30a), the exit distribution
can be written in terms of G by the formula

FOu)= — ijw e’**CG( y)dy, u<0. (32)
0

Introducing the resolvent kernel ¢( -, - ) this can be rewrit-
ten as

F(Ou) = _ﬁj” J‘“’ e YE/H
o Jo

XC[8(y—2)+v(y2)]U(2)dzdy. (33)

If the expression for U/(z) in terms of the incident flux is used
in Eq. (33), then

1 ) oo 1
FOp) = —— BC [8(y —
0 2”foj;foe [6(y —2)

+ ¥(p:2) e = 27D (s)ds dz dy. (34)

This equation relates the exit distribution to the incident
distribution by making use of the resolvent kernel. To write
Eq. (34) in terms of the factors of W, it is necessary to write

fwf e?*EC[8(y —2) +¥(y2)]e”>"dzdy (35)
0 (¢]

in terms of the factors of W. This will be accomplished in two
parts. First we have the following lemma.
Lemma 1:

J f e *C8(y—2) +y(yz2)le 2" dzdy
(1] 0

=H,(—u)[[su/(u—5)]1H,(s)
— s/ (u — ))H,(s) + (w—s)H [ (M ],
(36)
where

W'(1/ip) =H,(—p)H, (1)

is a canonical factorization with H; and H, analytic in the
open right half-plane and continuous and invertible in the
closed right half-plane. )

Proof: Let G(x;5) be a solution to the matrix Wiener—
Hopf equation

Glxs) = f K(x—p)G(ys)dy +e=7 (37
0

In this equation the variable s is considered to be a param-

J

J‘m on e [I+ iM] C{8(x—2) +y(x,2)le =" dzdx.
o Jo 7’
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eter. Note that the left-hand side of Eq. (36) is

f &G ys)dy = G+ (uss). (38)
0

IfEq. (37) is extended to the entire real line in the usual way
and the Laplace transform is defined by

G(A) = Jm dx €/*G(x), Re(l) =0, (39)

while Z(A) = W(1/id), then the Laplace transform of the
integral equation is

Z(AG*A)+ G~ (L)

=[sA /(A =) —s(A /(A —5)PM. (40)

The functions G * and G ~ have already been defined by Egs.
(40a)-(40d), and the matrix M was introduced in Eq.
(45a). Now assume that the factorization of Z(1) is given
by
Z Y u)=H,(—p)H, (1),

where the functions H, and H, are analytic and invertible on
the open right half-plane, and continuous and invertible on
the closed right half-plane. Using the above factorization,
Eq. (40) may be rewritten as

Hi'(=p)G*(u) + H, ()G ~ ()
=H,(u) [[sp/(u—)) —s/(n—s)PM]. (41)

If the right-hand side of Eq. (41) can be written as the sum of
two terms, one analytic and invertible in the right half-plane,
the other one analytic and invertible in the left half-plane,
then Liouville’s theorem can be invoked to solve for G * and
G ~.Due to the second-order pole in Eq. (41), it is necessary
to introduce the first derivatives of the H-functions into this
splitting. By inspection, the splitting is given by the sum of

[su/(p —$)1[H, (p) — H,(s)]
—s{u/(u — )P [H, () — H,(s)

— (u—s5)H [ (s) M, (42a)

which is analytic in the right half-plane, and the expression

K H,(s)—s( ad
u—s U—s

2
) (2.6 + w—9H: 1M,

(42b)

which is analytic in the left half-plane. An application of
Liouville’s theorem then proves Lemma 1. Note that, for
M =0, Eq. (42b) reduces to the result given in Ref. 9. Using
Lemma 1 it is now possible to write Eq. (35) in terms of the
H-functions. To do this it is expedient to define

I'(u,s) = right-hand side of Eq. (36). (43)

Now substitute the explicit formula for exp( — y=/u) into
Eq. (35). The result is
(44)
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The contribution due to the term ¢** gives CT (u,s), while
the term (x/u)e™* gives rise to first derivatives of the func-
tion I'. It is easily checked that

f f ie"”‘C[:S(x—z)+7/(x,z)]e“‘2/“dzdx
o Jo

=pC3a,T'(us).
Therefore,

(45)

1 1
FOu)= — z— [{—pd.M ]CJ- T(u,s)®(s)ds.
0
(46)
It is routine to generalize the exit distribution formula [Eq.
(46)] to the N-group problem. If 3 = D + M is the Jordan

decomposition of 2 with D the diagonal matrix given by
diag{o;}"_,, then the right-hand side of Eq. (40) is replaced

by
N-—-1 u m+1\N
z ( — )™diag {s( ) ] M™ (47)
m=0 Mo —§ i=1
Now it is necessary to write
N-1 u 2N
H@'S (~1)mdig [s( ) ] M™ (48
m=0 MO —S) )iz

as the sum of two terms, just as was done for the two-group
case. Note that Eq. (48) has poles at 4 = s/0;, which are in
the right half-plane. Denoting the ith column of a matrix 4
by [4 ], and noting that

[ s s () ]
MHO; —S§ )

= [H, (1) ] sle/ (uo, -8+, (49)

Eq. (48) can easily be written as the sum of two terms, one
analytic in the right half-plane, the other one analytic in the
left half-plane. This is accomplished by writing Eq. (49) as
the sum of

[Q.F (19)]
= (B =75 L (o - 2 (£)]
= ’ /-‘ o HO; R r o)l

Xs(p/(po; — "+,
which is analytic in the right half-plane, and

_ —N—IL _ﬁ)m (m)i]
[@r (9]0 = ,..E=o m! (Pai s H# ( ) &

o;

Xs(u/(po, —))"*, (51)

which is analytic in the left half-plane, where H (™ and H {™
are the mth derivatives of H, and H,, respectively. Therefore
the generalization of Lemma 1 to the N-group problem is

N-—1

Plps)=H(—p) 3 Q. (psIM™, (52)
m=0
and the exit distribution { F(0, )], is given by
N—1 m
_ 1 L(ﬁ) @)"
2[1 meo m! \o;
1
xf [M"‘I‘ (i,s) ®(s) ds . (53)
o g 0
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Not only can the exit distribution be written in terms of
the factors of the symbol, but the solution for any value of x
can also be written in a similar fashion. This can be done by
making use of Eq. (30b), which relates F(x, z) to G(x),
and the results of this section. First we note that

~ 1
G+ =j T( ) ®(s) ds. (54)
0

From this expression it is possible to recover the function G.
Now that G is known, the solution F(x, 1) for x <0 can be
computed by making use of Eq. (30b).

VIl. CONCLUSION

Formulas for the exit distribution and the solution to a
multigroup transport equation with a nondiagonal cross-
section matrix have been derived in terms of generalized
Chandrasekhar H-functions. For the special case of two
groups with a noninvertible scattering matrix, the H-func-
tions were computed explicitly. Unfortunately, for N> 2 we
are not able to construct the factorization explicitly, so we
are forced to derive a nonlinear integral equation which the
H-functions satisfy and to set up a numerical scheme for
solving them. This work will be published elsewhere.
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Massless, D( j,0) @ D(0, j), multispinor fields of arbitrary unmixed spin j are reduced by simple
matrix-algebra methods to associated tensors and tensor—spinors. A generalized Majorana
condition applied to the multispinors is seen to correspond to reality and Majorana conditions on
the associated tensors and tensor—spinors, respectively. The symmetries of the latter are displayed
explicitly for arbitrary spin. For spin-1, -3, -2, and -3 the free-field gauge-invariant Lagrangian
wave equations of Maxwell (spin-1), Rarita-Schwinger (spin-3), Fierz—Pauli (spin-2), and spin-
3 are derived directly and in a uniform manner from the simpler equations of the unmixed spin
reps strongly suggesting the method is extendable to arbitrary spin. Similar features of massive

fields are briefly reviewed.

I. INTRODUCTION

The only irreps of unmixed spin of the full Lorentz
group O, are D(0,0), the trivial scalar rep, and
D(j,0) ® D(0,j), where D(j,,j,) are the irreps of the re-
stricted (inversion-free) Lorentz group SO, . In a previous
paper,? symmetries of Weyl field tensors and tensor-spinors
for arbitrary spin were considered using primarily matrix
methods. We consider here the arbitrary spin case from the
point of view of Dirac spinors, again using matrix methods
rather than explicitly indexed spinors.

In Secs. II and III we set out the details of the
2(2j + 1)-component spinors that form the starting point
of our analysis and describe the generalization of charge con-
jugation to arbitrary spin. In Sec. IV we establish the rela-
tions between the multispinors of spin-1, -3, -2, and -3 and the
corresponding tensors or tensor-spinors. From each we de-
rive the corresponding Lagrangian potential. We discuss the
arbitrary spin case in Sec. V and the massive spin results
briefly in Sec. V1.

li. ARBITRARY SPIN SPINORS AND WAVE EQUATIONS

The D(},0) ® D(0,}4) rep space is the space of four-com-
ponent Dirac spinors ¥ = (¥*) (a = 1,2,3,4). Under a
Lorentz transformation, W transforms according to
V—S(A)Y, where §' = exp( — Yiw,, ¥*") and the Lorentz
transformation A is parametrized by ,,, . (The infinitesimal
generators y*” are defined in the Appendix, which fixes our
conventions and lists Dirac algebra identities.) The Dirac
adjoint spinor ¥ = W'y, transforms as W—W¥S$ ~!. Note that
in this role, y, actually transforms according to
Yo—>S ™ y6S 7! =, consistently with y,—A",Sy,S !
=%,.

#The chiral parts of a Dirac spinor are
¥, =1(1 £ 75)¥ and the sum of these reconstructs the
whole spinor. In the chiral or Weyl rep, the chiral parts may
be regarded as (two-component) Weyl spinors (¢ and x) of

* This work contains part of the M.Sc. thesis of Collins' presented to the
Department of Physics, Canterbury University, 1985.

® Present address: Department of Physics, State University of New York at
Stony Brook, Stony Brook, New York 11794.
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opposite chirality

¥ = (Z‘A’)

For arbitrary higher spin j, the corresponding O, ; irreduci-
ble D(j,0) & D(0, /) rep space is comprised of multiply in-
dexed Dirac spinors ¥, symmetric on all of their 2 j indices
(which we suppress) and with totally symmetric chiral parts
¥, =1(1 1 ¥;5)¥. Consequently ¥5 can act on any index of
¥ with equivalent results. In the chiral rep, such a spinor is
the direct sum of two (totally symmetric) opposite chirality
Weyl spinors. This is in contrast to the multispinors used in
the formalism of Bargmann and Wigner,® where the rep
space is ® }/(D(1,0) ® D(0,4)) (O, ; reducible forj>1) and
the spinors are merely required to be symmetric. Since the
2(2j + 1)-dimensional space D( j,0) & D(0, ) is a subspace
of the (2j+ 3)!/312l-dimensional space @3/(D(},0)
@ D(0,4)) it is possible to handle an unmixed spin multi-
spinor as a Bargmann—Wigner spinor that happens to have
block-diagonal form in the chiral rep. The transformation
law for both types of spinors can therefore be written
VY- (S®Se - 85)¥, where there is one transformation
matrix S for each of the 2 indices of ¥. By indexing and
rearranging, we see that any number of the transformation
matrices may be transferred to the right-hand side of ¥ pro-
vided they are then transposed (S—S7), namely
Y>(SeSe - 8S)¥(STe - aS87).

_ The adjoint for a spinor of spin j s
V=¥ (y8¥® - ®%,), where the ¥, matrices are 2 j in
number, any of which may be transferred to the left-hand
side by transposing. The complete contraction of ¥ with ¥ is
a Lorentz scalar.

For massless fields, the appropriate free-field wave
equations for the D( j,0) and D(0, j) parts of ¥ are general-
ized Weyl equations.” In the Bargmann-Wigner spinor
space these can be written

d¥ =0, (2.2)
where the ¥ matrix of 8 = ».d may act on any of the 2

indices of W. Mass irreducibility with zero mass follows by
acting on (2.2) with 3 to yield OW = 0. The form (2.2) is in

(2.1)
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fact just the massless limit of the Bargmann-Wigner equa-
tions,

(i6 —m)¥ =0, 2.3)

which, for spin-1, is simply the Dirac equation. For arbitrary
spin and nonzero mass, Eq. (2.3) may be derived from a
2 jth-order equation, which projects out the highest spin of
¥.* For spin-, the analogous equation for massive
2(2j + 1)-component spinors is again the Dirac equation
(2.3). However, for massive spin > } there is no simple first-
order form like (2.3). Naively applying (2.3) to a massive
2(2j + 1)-component spinor ( j>4}) annihilates the spinor.

lil. CHARGE CONJUGATION OF AN ARBITRARY SPIN
MULTISPINOR

As usual, the charge conjugate of a spin-§ spinor ¥ is
written

¥ = CVT = Cylv*, (3.1)
where C is the charge conjugation matrix. For free fields we
require ¥° to satisfy the same equation as ¥ [namely (2.2) or
(2.3)]. This condition implies that positive-energy solutions
of the equation of motion are carried into negative-energy
solutions under charge conjugation and vice versa. (Fur-
thermore, if ¥ is minimally coupled to the Maxwell or
Yang-Mills fields, then ¥° will be minimally coupled but
with opposite charge.) The above requirement implies that
C satisfies

(m=0), (3.2)
(m#0). (3.3)

The associated requirement that ¥ transform under Lor-
entz transformations as a Dirac spinor gives

CyiC~l=ay,
CriC'=—v,

Cyzvc_l = _vi! (3-4)

which is consistent with (3.3) and implies thata = + 1 in
the massless case (3.2). Also, C allows nontrivial self-conju-
gate massless fields if and only if a = — 1 in (3.2)5 It is
therefore natural to impose this condition, making the mas-
sive and massless charge conjugation matrices identical. Ap-
plication of Schur’s lemma®” permits us to establish® the rep-
independent properties of the charge conjugation matrix C
to be

C}’:‘,C—l= —y;tv’ C,},Z’C—l= _yu!
CT= _C, C'C=1, C*C= —1. (3.5)
In addition, in “friendly” representations, where each of

the y,, is either symmetric or antisymmetric, the phase of C
can be selected so that

C'l=_C=C*=C. (3.6)
Although Eq. (3.6) holds in many representations (for ex-
ample, the Weyl or chiral rep and the Dirac and the Major-
ana reps®), because they are not totally representation inde-
pendent, no results of physical importance should depend on
their use.

We define a Majorana spinor to be a charge self-conju-
gate spinor

¥ = bV, 3.7
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where bis an arbitrary phase factor (|6 | = 1). By (A23) this
is a rep-independent concept. Here we will always select
b = 1. (In a Majorana representation Cyl = i could be tak-
en so that selecting & =/ would be equivalent to requiring
that the components of ¥ be real in such a representation. )
Clearly a Majorana Dirac spinor has four real or two com-
plex components. A Majorana spinor may be split into chiral
parts by the operators 1(1 + y5), but each part still has two
complex components and Majorana conjugation links the
two chiralities

(W ) =)g, or ¥W=V(V,)=¥_.. (38)

We note that this implies that C has (2X2) block-diagonal
form in the chiral representation. For a spinor of spin j, the
natural generalization of (3.1) has 2 j factors of C:

V= (CoeC® - 8 C)¥7
=(C® - C)¥(CT® - &CT). (3.9)

As for spin-i, the charge conjugate will obey the same
equation as ¥, but with opposite charge when minimally
coupled electromagnetically or via Yang-Mills charges. A
single Majorana spinor of arbitrary spin can have no gauge-
invariant couplings to a spin-1 boson and in this sense is
neutral.

IV. FIELDS STRENGTHS AND LAGRANGIAN WAVE
EQUATIONS FOR SPIN-1, -3, -2, AND -§

We will first review the well-known relationships
between the unmixed and mixed irreps of massless spin-1 to
assist in establishing a pattern for the higher spin cases.

A. Helicity 1: Maxwell field

From the spin-1 spinor ¥ we may construct a corre-
sponding complex field strength tensor by defining

F, =1Tr(¥C~'y,,). 4.1

Because of the symmetry of W, it is not necessary to specify
which of the two indices of ¥ are contracted in the matrix
multiplication with C ~'y,,, and which is traced with the
remaining free matrix index. It is also readily verified that
(4.1) is representation-independent and F; ,,, = F,, fol-
lows from the properties of 7,,, . Hence F,,, has six complex
components, the same number as ¥. Now WC ~! has 2X2
block-diagonal form in the chiral rep and is traceless because
of the symmetry of ¥ and the antisymmetry of C ~'. Hence
using identity (A 17) the spinor ¥ can be recovered from F,,
via

¥ =1F, y*C. (42)
Given any antisymmetric F,,, (4.2) yields a
D(1,0)  D(0,1) spinor, from which F,,, may be recovered
via Eq. (4.1) due to identity (A15). Hence (4.1) and (4.2)
are reciprocal and define an isomorphism between the spaces
of D(1,0) ® D(0,1) spinors and antisymmetric second-order
tensors. That is, F,,, and ¥ contain the same information.
One can define chiral field strengths F £ using ¥ , in
place of ¥ in Eq. (4.1). These can be shown to be self-dual
(iF a = F ) and anti-self-dual (iF o = — F ) from the
duality property (A7) of 7,,. Any antisymmetric second-
order tensor can be split into the sum of a self-dual and an
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anti-self-dual part, and this could serve as an alternative de-
finition of the chiral parts of F,, . Equations (4.1) and (4.2)
also provide isomorphisms between the respective chiral
parts of F,,, and V.

Using relations (3.5) and (AS5) to evaluate F %, gives

F*, =1Tr(y,,C™W), (4.3)
demonstrating a close relation between the Dirac adjoint at
the spinorial level and the complex conjugate at the tensorial
level. Indeed, Eq. (4.3) could be taken as the definition of an
isomorphism between Dirac adjoint spinors and tensorial
field strengths analogous to (4.1). Equation (4.3) can also
be put in the form

F2, =1Te(¥C "W )s (4.4)

and clearly F,, will be real if and only if it is derived from a
Majorana spinor. Note that, by (3.8), a real F,,, cannot be
separated into real chiral parts. The tracelessness of ¥C ~'
and the wave equation (2.2) imply

3 *F,, =0. (4.5)

Equation (4.5) also holds for the chiral parts of F,, and
hence for the dual of F,,, . The dual equation acts as an inte-
grability condition for F,,, so the Poincaré lemma® implies
that a field 4, (which may be the Hermitian electromagnet-
ic potential if ¥ is Majorana) exists such that

F,,=d,4,—3d.A,. (4.6)
Substituting into (4.5) now gives the usual gauge-invariant
Maxwell equation

04, —3,34=0, (4.7)

with an identically divergence-free left-hand side. This latter
condition is, of course, a necessary condition (see, for exam-
ple, Doughty and Wiltshire?) for the equation to be deriv-
able from a Lagrangian. The usual helicity-1 gauge-invar-
iant Hermitian Lagrangian can then be defined using this
potential 4, as the coordinate field.

B. Helicity 3: Rarita~-Schwinger field

Analogous to (4.1), define a complex field-strength ten-
sor-spinor f,,, from the spin-} spinor ¥:

S =1} Tr(¥C ~'y,,).

As before, the symmetry of ¥ makes it unnecessary to spe-
cify which of its indices are used for matrix multiplication or
tracing, and which is left free to act as the (suppressed)
spinorial index of f,,,. Clearly f,, is antisymmetric:

St =Fve 4.9)
The chiral parts of f,, can be defined by applying (4.8) to
the chiral parts of . By applying the chiral projector to that
free index of W, which becomes the spinorial index of f,,,, it
is clear that the chiral parts of /,, can also be written

s =31+ ¥5) Lo (4.10)
As for helicity 1 these chiral parts are (anti-)self-dual:
ifE=tfi (4.11)
Hence the full tensor—spinor has the duality property
i fouw = Vs So- (4.12)

(4.8)
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In the chiral representation, for each value of the index of ¥
that was left free in (4.8), there is a symmetric block-diag-
onal matrix. Hence, as with the helicity-1 case, ¥ can be
recovered from f,,, by the use of (A17):

VY=1f, ey*C. (4.13)
From this it is readily shown that
Y* fiw =0. (4.14)

These symmetries (4.9), (4.12), and (4.14) reduce f,, to
just eight complex components, the same number as W. It is
therefore clear that Eq. (4.13) is the inverse of Eq. (4.8) so
that these equations define an isomorphism between the
spaces of spin-} multispinors and tensor-spinors. From the
above symmetries we establish the dependent symmetry

¥*fo, =0. (4.15)

This symmetry combines with (4.9) to form a complete set
of symmetries for f,, equivalent to the set (4.9), (4.12), and
(4.14).>1° For helicity 3, the Dirac adjoint of W is related to
the Dirac adjoint of f,, analogously with Eq. (4.3):

f =1T1(y,,C™9). (4.16)
Similarly, the Majorana conjugate of W is related to f,, by
CfI, =31Tr(¥°C'y,,). (4.17)

Consequently, applying the generalized Majorana con-
dition to a multispinor W is equivalent to simply applying the
usual Majorana condition to the spinor part of the associated
tensor-spinor. As for helicity 1, Eq. (2.2) implies

3*f, =0, d*f, =0. (4.18)

Hence the Poincaré lemma ensures the existence of a poten-
tial ¥, (which will be a Majorana vector—spinor if the origi-
nal multispinor ¥, and hence f,,,, were Majorana), which
satisfies

S =0,%,—3,9,. (4.19)

However, the field equation for ¥, does not follow from
the first equation of (4.18), which yields a second-order dif-
ferential equation for ¥,,, but from the symmetry (4.15),
which directly yields the simplest form of the gauge-invar-
iant massless spin-3 Rarita—Schwinger equation,

3, — 3,y ¥ =0. (4.20)

The second-order equation can also be derived from
(4.20) and constitutes a differential condition on the ¥,
field. Equation (4.20) is invariant'' under the gauge trans-
formation ¥, = d,, € (for an arbitrary spin-} field €) but its
left-hand side is not divergence-free off-shell and the equa-
tion cannot therefore be derived from a Hermitian Lagran-
gian, nor coupled directly to a conserved vector-spinor
source. However, by adding a multiple of its spinorial trace,
a divergence-free form is readily obtained,

v, — 3,7V —y,0¥ + 7,60V =0, (4.21)

and this equation is equivalent to (4.20) except that it is
derivable from a Lagrangian. By using the Dirac identity
(A8), this equation can also be written compactly as

€“**ysy,d;, ¥, =0. (4.22)
For both of these, the Hermitian gauge-invariant Lagran-
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gian may be taken to be

L= —1¥,e"?y,3,9,. (4.23)
C. Helicity 2: Fierz-Pauli field

We form the complex tensor

Cuvip = 15 Tr(Tr (¥C “‘yﬂv )C ‘lnp )s (4.24)

with the inverse relation following from a double application
of (Al17):

¥ =1C,.1, (r*"CoY**C). (4.25)
The symmetries
Clunap = Cuiap1 = Cuip = Cipv (4.26)

leave C,,, , with 21 complex components. The independent
symmetry

C[uwlpl =0 (4.27)

eliminates another component. The ten further relations
needed for C,,,, , to have the same number of components as
¥ are supplied by the tracelessness relation’®!?

C*. =0. (4.28)
Two dependent relations are

Crap =Cuis (4.29)

Cutvapy =0. (4.30)

As with helicity 1, the spinorial chiral parts of ¥ can be
used to define tensorial chiral parts C 5, ,. These can be
shown to be (anti-)self-dual on both their first and second
pair of indices. Since any fourth-order tensor obeying the
symmetries (4.26)-(4.28) [and hence (4.29)] can be split
into an anti-self-dual and a self-dual part, the chiral parts of
C,..., could equivalently be defined by this property.

By double application of the same procedure as used for
helicity 1, an analogous relation to (4.3) between the Dirac
adjoint of ¥ and the complex conjugate of the tensor can be

established.

C*i,p =1 Tr(Tr(y,, C T(7,,CT¥))). (4.31)

Double application of Eq. (4.4) also gives the relation
between the complex conjugate of the tensor C,,, , and the
charge conjugate of W:

Cri, =% THTr(¥°C 'y, )C 'y,

uvi p

(4.32)

Hence, as before, a Majorana spinor will give rise to a real
tensor.

As for the lower spins, Eq. (2.2) leads to an integrability
condition for C,,; ,,

(4.33)
where the comma is used as a convenient alternative nota-
tion for the partial derivative. Following Pirani'® we use con-

dition (4.33), the Poincaré lemma, and (4.26) to obtain a
tensor Q,,, such that

Cotapr1=0s

valp = QI“’”»P]' (434)
We may vary Q,,,, by an arbitrary divergence without alter-
ingC,,;,:

Qs =Puys. (4.35)
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Symmetry (4.30) implies an integrability condition for

Q,u vA

Qp[wl,p] = O’ (4.36)
which in turn implies the existence of atensor N, uv» SUch that
Qy[w{ ] = wnlvid 1 (4-37)

The freedom (4.35) allows N,,,,; to be subtracted from Q,,.,
so that we may take

Qy,w{ = Qu(wl) . (4.38)
Now
0 = C( uvii p = Q( uv)(A, pl (4-39)

implies the existence of a symmetric tensor 4,,,,, such that
Q( i = hyv,/l . (4'40)
Symmetry (4.38) allows Q,,,, to be expanded according to

Q;tv/l = Q( uv)i + Q( puyv Q(wl)y

= huv,/l + hM,v - hw{,u’ (4~41)
yielding
vai.p = —w[#hv][,l’p]. (4.42)

A real tensor C,,,; , (arising from a Majorana multispinor
¥) corresponds, of course, to a real potential 4,,,, .

The second-order massless Fierz—Pauli field equation*
follows from substitution of (4.42) into the symmetry
(4.28):

Ok, —23%3 ks +3,8,h =0, (4.43)

(u’v)

where 4 = h* ,. As with the helicity-} case, the field equa-
tions for ¥ and C,,, , constitute higher-order differential
conditions on (4.43). Furthermore, (4.43) is gauge-invar-
iant under 6h,, = d,§, +d,§, (where §, is an arbitrary
vector field), but the left-hand side is not divergence-free off-
shell, and hence not derivable from a Hermitian Lagrangian.
Again an identically divergence-free equation is obtained by
adding to (4.43) a multiple of its own trace giving

Oh,, —28%3, ,h,,, +8,0,h

—,,0h +1,,0%3 #h; , =0. (4.44)

These equations are, of course, derivable from the linearized
Einstein Lagrangian."’

D. Helicity §

Analogously to helicity 2, we define a complex tensor
spinor

Sovip =15 TO(Tr(¥C "'y, )C " '71,), (4.45)
with the inverse relation
\I/=§j:w,1p(y’”C®1/“’C). (4.46)

Asfor C,,, ,, the tensor-spinor f,,, , obeys the symmetries
.f[ wlip =Juvliip] =f;'1vlp =f;.puv’
fipvip] =0. (447)
In addition to these, £,,,, obeys the symmetry
V¥ fuvip = 0. (4.48)
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This implies the vanishing trace relation

fa, =0 (4.49)
Dependent relations include

Smap =Fuips (4.50)

Jutap1 =0 ¥* fuap =0. (4.51)

As for lower spin, the spinorial chiral parts of the ¥ can
be used to define tensor-spinor chiral parts f£, . These
obey

pji/lp =£(1 :tys)f;wlp’ i~uiv).p = j: piwlp9 (452)
where the dual operation may act on either the first or sec-
ond pair of indices of f,,, ,. The full tensor-spinor therefore
obeys

i~;4wlp = YSf;wAp' (453)
The Majorana conjugate of f,,, , is related to the Majorana
conjugate of ¥

i p = 15 Tr(Tr(¥°C " )C T a,) (4.54)

Equation (2.2) leads to an integrability condition for
Juva p and the Poincaré lemma may be applied as for spin-2.
The only differences are that the tensors are replaced by
tensor—spinors and the tensor-spinor g,,,,; , corresponding to
Qv » can be chosen to satisfy

¥4, = 0. (4.55)

One obtains a symmetric tensor—spinor potential ¥,,,,, such
that

qul = ‘l/p.v,/l + wp/l,v - \I‘wl,p’ (4~56)
S = =201, ¥4 01 (4.57)

The potential ¥, is a Majorana tensor-spinor if the original
multispinor ¥ (and hence f,,,,;,) was Majorana.

Equation (4.55) implies the simplest form of the mass-
less spin-§ field equation’®'” namely

3Y,, —2Y'9,¥,. =0. (4.58)

The f,,,, field equation and (4.49) imply differential con-
ditions for W, which are also derivable from the ¥, field
equation (4.58). Equation (4.58) is gauge-invariant under
o¥,, =d,€, +d,¢€,, where €, is an arbitrary y-traceless
vector-spinor field (that is, arbitrary up to satisfying
y-€ =0). Equation (4.58) is equivalent to the following

equation (in which ¥ =W¥*# ,):

a‘l’ﬁw - 27}8(#“’\01 - wiy(y\pvm + 27(;;67/1\1’1/)/1

—17,,8¥ +7,,0*v"¥,;, + 7,0, ¥ =0. (4.59)

Denoting the left-hand side of (4.59) by y,,, , the y-traceless
part of y,,, is identically divergence-free,'*'’

3 * Xy — 1 7'Xa) =0, (4.60)
as is necessary for the equation to be derivable from a La-
grangian. One such Lagrangian was displayed recently as
part of an analysis of arbitrary spin by Berends et al.!® Ear-
lier papers with massless spin-§ Lagrangians include Berends
et al.,'**° while Fronsdal,”! Fang and Fronsdal,?? and de
Wit and Freedman?® give Lagrangians for massless fields or
arbitrary spin.
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V. ARBITRARY HELICITY

The cases of spin-1 through -§ establish the pattern for
the relations between spinors of unmixed spin and corre-
sponding tensors and tensor-spinors. No new features occur
for higher spins: there are simply more space-time indices in
the equations. For integer spin j and half-odd-integer spin
J = n + 1, respectively, one may define

Fyonpy = QI Tr(Tr(WC 7y, ) -+ C 7, ),s
(5.1)
S oy = B Tr(Tr(¥C ) - €7, ).
(5.2)
These have inverses
V= ()F,,, ..pp (" Co - @ y"C), (5.3)
V=(1"fu ey, (¥"C® o @y""C). (5.4)

Both Fand f are antisymmetric on each pair of indices
[ u#;v;] and are symmetric with respect to permutations of
such pairs of indices. Analogously with Eq. (4.28), the trace
on any two indices in different pairs vanish. Analogously
with (4.27) and (4.30), the parts of Fand f that are totally
antisymmetric on two pairs of indices or on three indices
including a pair vanish. For integer spin, these reduce F to
2(2j+ 1) complex components. For half-odd-integer spin
there is the further relation

Y fuy.. =0, (5.5)
or equivalently
Y fur.. =0, (5.6)

which reduces f t02(2j + 1) components. The symmetries
and equations obeyed by our Fand f are identical to all the
corresponding equations for the tensor and tensor—spinor
field strengths R constructed by Berends et al.** from the
Lagrangian potentials. Chiral parts for both f and F may be
defined by using the chiral parts of W in definitions (5.1) and
(5.2) and these are (anti-)self-dual on each successive pair
of antisymmetric indices. Majorana multispinors continue
to correspond to Majorana tensor—spinors and real tensors.

As for lower spins, the generalized Weyl equation (2.2)
yields mass irreducibility and an integrability condition for F
and f, allowing the Poincaré lemma to be applied. The uni-
formity of the direct procedures used here to derive the
forms of the Lagrangian wave equations for spins-1, -3, -2,
and -3 from the simpler unmixed spin reps strongly suggests
that the method is extendable to obtain the Lagrangians for
arbitrary spin.'®!”?!'-23 Further new features occur beyond
spin-§, such as the vanishing of the double trace of the La-
grangian field for spin >4, and one would expect these to
arise naturally in the transition from the unmixed to the
mixed spin irreps rather than requiring ad hoc assumptions.

Nevertheless, beyond spin-] one would wish to find the
general procedure to carry out the j or j-1 integrations to
obtain the Lagrangian fields, unique up to the appropriate
gauge freedoms. The extension to arbitrary spin of the proce-
dures developed here will be considered in subsequent pa-
pers.2
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VI. MASSIVE FIELDS

The isomorphism in Eq. (4.1) and (4.2) is possible for
massless spin-1 because the matrices 7,,, C span the space of
D(1,0) # D(0,1) spinors. For massive spin-1 fields it is not
possible to use these D(1,0) # D(0,1) fields alone since a
simple first-order wave equation is not then derivable. The
same is true for all j>1 with nonzero mass. Bargmann—
Wigner multispinors are used instead. For massive spin-1
the space of symmetric spinors of rank two is spanned by the
matrices (,,C,y, C) so a vector field 4, must be intro-
duced”® in addition to F,,, . One expands W as

V=1IF, y"C+A4,y"C,
with
F,=4Tr(¥C7'y,,), 4

10,26

(6.1)

=1Te(¥C'y,).  (62)

applying the Bargmann-Wigner
F,, is dependenton 4,,,

7
As is well known,
equations to W implies

F,, =(1/m)@d,4, —-3d.4,), (6.3)
and 4, obeys the usual Proca equations
(O+m*A4, =0, d*4, =0. (6.4)

As for the massless fields, the complex conjugates of 4,
and F,, are related to the Majorana conjugate of ¥ by (6.2)
so that a Majorana multispinor ¥ corresponds to real fields
A,and F,,.

Similar results hold for spin-} and higher with the gen-
eral Rarita-Schwinger equations arising for half-odd-in-
teger spin and the general Fierz-Pauli equations arising for
integer spin.'®?%?’ At all levels, Majorana multispinors cor-
respond to Majorana tensor—spinors and real tensors.

VIi. CONCLUSION

We have demonstrated how massless multispinor fields
of unmixed spin may be used to derive the standard massless
Lagrangian field equations of helicity 1, 3, 2, and §. We have
also displayed explicitly the relationship between reality or
Majorana conditions on the Lagrangian fields and a general-
ized Majorana condition on the underlying multispinor
fields. The correspondence between the multispinor fields
and associated tensor and tensor-spinor fields is essentially
uniform for arbitrary spins. The method used here for deriv-
ing the standard Lagrangian field equations ought to be ex-
tendable, in a uniform manner, to arbitrary spin.

APPENDIX: CONVENTIONS AND IDENTITIES

Matrix operations: superscripts on matrices have the fol-
lowing meanings:

T = transpose,

* = complex conjugate,

t = Hermitian conjugate = *7.
Our metric and Levi-Civita conventions are
(,,) =diag( +1,—1,—-1,—1), €= + 1. Indices
enclosed in (square) round brackets are (anti)symmetrized
according to
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1
T(l‘l ) T m! Z TI‘wl -t Ham?
1 -
T == 3 (= DT

where the sum is taken over all the permutations 7(n) of the
numbers 1,...mand ( —1)” = + lifriseven,or — lif 7
is odd.

Dual tensors: for an | antisymmetric tensor Fy,,; = F,,,
the dual is defined to be F,,, = J,,,1 ,7**. The dual can also
be defined on any pair of antlsymmetnc indices of any tensor
and is then denoted by placing the tilde (~) over the pair of
indices

...... =1€,.1 ,,

The dual satisfies F —F,,.

Dirac algebra: The deﬁning relations are

ryt=2*, vi=% 7= -7 (A1)

Some other definitions and relations follow:
Y =4lrty), vs=0r'rY, (A2)
s =0, [¥s7,1=0, (A3)
rsvs=1, vi=vs (A4)
YoVpVo="Yus Yo¥iuVo= Vuvs (AS)
Yo¥i7o = Vs Yo(¥u¥5) Vo =V 7s (A6)
Wow = Vs¥yuor (A7)
Yyt =R Pysy, + intY — iy, (A8)
[y“y™*] =2i(*7" — n*y), (A9)
[y ] = 2i(q™ e + qhoy™ — gty — gy,

(A10)

Y. =4 ", =12, (All)
Tr(y# - y™) = Tr(y* - y*y5) =0 (k odd), (A12)
Tr(y*y") = 49", (A13)
Tr(ys) =Tr(y,) =Tr(y.,) = Tr(y,,75) =0, (Al14)
Tr(P7**) = 4(n*' 9™ — q=Py™). (A15)

Regarding the nonzero components of y,,, as six inde-
pendent matrices, the following collection forms a linearly
independent set and is a basis for the set of 4 X4 matrices
over the complex numbers:

{I’Yu 97;41"7/;4 75’}/5}' (A16)
In particular, for any traceless 4 X4 matrix W that decom-
poses in the chiral representation into diagonal 2 X2 block
form, one has the completeness relation

W =1 Tr(Wy,, )y*". (A17)

Another basis for the 4 X 4 complex matrices is given by

{C7,C¥ G ¥sCysCh (A18)

where C is the charge conjugation matrix discussed in the
text. Note that ¥, C and 7,,, C are symmetric, while the oth-
ers are antisymmetric.

Any two representations y,, and 7/,, of the Dirac algebra
are related by a similarity transformation

Y. =Uy, U7, (A19)
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where U may be taken to be unitary due to the unitarity
(A1) of the y elements. The D(4,0) ® D(0,}) spinors are
hence transformed between representations according to

V¥ =0v, F-¥=F0U"", (A20)
Similarly, spin j multispinors transform according to
¥¥ = (Ve Us - o V)Y, (A21)

where there are 2 j matrices U, any number of which may be
transferred to the right-hand side by transposing. The appro-
priate transformation for C is

C=UCUT. (A22)

Under (A22), the properties (3.5) also hold for 6, while Eq.
(3.6) are not preserved under (A22) with an arbitrary uni-
tary matrix U. Furthermore, a charge-conjugate spinor cor-
rectly transforms between representations as a spinor

V= (CrseCrse -~ Cy)¥V*—(UeUs - @ U)¥".
(A23)
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Coordinate-independent formulation of the Langevin equation
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A diffusion process on a compact Riemannian manifold is considered, and a coordinate-invariant
Fokker-Planck equation is formulated. A covariant form of the Langevin equation is also
derived, and the formalism is applied to the stochastic quantization of lattice gauge theories.

1. INTRODUCTION

Variables in lattice gauge theories take values in Lie
groups; the problem of describing the stochastic quantiza-
tion of these theories led us to consider diffusion on compact
Riemannian manifolds with metric g,,, without boundaries.
Stochastic processes and their use in the quantization of field
theories in flat manifolds is an extensively studied subject.'?

Diffusion on Riemannian manifolds was discussed in
detail in Ref. 3, where a coordinate-invariant Fokker—
Planck equation was presented. In this paper we will discuss
the same equation but our approach differs from that of Ref.
3 in that our underlying Langevin equation is simpler. The
reason for this is that the authors of Ref. 3 explicitly avoided
using metric-dependent noise terms that resulted in two
rather unconventional coordinate-invariant Langevin equa-
tions. As we shall see below, using metric-dependent noise
averages results in a very simple form for the Langevin equa-
tion.

We propose here to give a presentation of the topic in a
form helpful for the purpose of numerical simulation of lat-
tice gauge theories. In practice this calls for simulation of the
relevant diffusion process by a discrete step Langevin equa-
tion; it will be our purpose to derive this.

Il. COORDINATE-INVARIANT FOKKER-PLANCK
EQUATION

If P(x,t) is a time-dependent probability distribution,
defined on a manifold M, P will satisfy the equation

if d?x\JgP(x,t) =0. 2.1)
dt Jm

Letp(x,t) = JgP, if we limit ourselves to boundaryless man-
ifolds, Eq. (2.1) is guaranteed if

9 p=—3,j", (2.2)

ot
where j* is a current density. A popular choice for j# is given
by
j*=F*p — kT+gg" d,((1/2) p) . (2.3)
The first term on the right-hand side of (2.3) is the so-called
drift force. The second term is the diffusion term,' F *is a

force field tangent vector defined on the manifold M, and T
is the temperature. The diffusion term is also a vector den-

sity, since (1/4/g) is a scalar. The form (2.3) for j* guaran-
tees that if F # is a gradient, that is

Fhe _gm3 V, (2.4)
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then a stationary solution to Eq. (2.2) is given by

p=+ge VT, (2.5)

Thus the general coordinate-invariant diffusion equation on
a curved manifold is given by

9P _

1
= = F#p v R .
i u[ » — kT\gg" av(&p)] (2.6)
=d,{[ —F*—kT(1/g)3, (Jgg"")] p}
+d, 9, (kTg"p) 2.7)

where all differential operators are moved to the left.

lll. THE GENERALIZED LANGEVIN EQUATION

We shall try to define now a stochastic process that is
coordinate independent, in the sense that the probability dis-
tribution must satisfy the coordinate invariant diffusion
equation (2.6).

We make use of the following asymptotic expansion.

&)
VA VAr
= fi0y6%(2) — fhy, 9, 8%(2)VAr
+ 3%, 8,9, 8°(2) JA?)?
- (1/3!)fij§) d; 9; 3, 8 (z2) (VAL ) + .

Here W(x) is a smooth function from R  to R and the
numbers fio,, fi1y5- S {;," are defined by the following
equations:

fd"x W(x)= fo »

3.1)

Jd"xx"W(x) = fly (3.2)

f déx xx"W(x) = fi;"-

The asymptotic expansion can easily be proved multi-
plying both sides of Eq. (3.1) by a monomial z* --- z" and
integrating over z.

Next we consider the following generalized form of the
discrete Langevin equation

X, —X, =JArn,, (3.3)

where the v, are independent stochastic variables whose
moments are fixed to the following values:
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n = VAL fi(x,),
(3.4)
W 13 = S2(X)E0n -
We further demand that the higher moments are not too
large, or more precisely

T g ~o(INADYM =2 (M33). (3.5)

If we write the probability distribution of %, as
W, (M,), the Fokker-Planck kernel for a time interval Az
can be written as follows:

K(x,y) =fd"175(x—y—-77\/Z7)Wy(17)

d
- (__1_) W, (" _y). (3.6)
VAt VAt
Applying the general formula (3.1) we obtain
K(x,p) =8(x— y) + [ ~fi(») 5—,5"(x -
fi(y) 9 3 } 3/2
== ———8%x — y)jAt+ O(A°'%) .
2 ox‘ox’ ( Y (
3.7)
Thus we see that the discretized Fokker-Planck equa-
tion

P(xt+ AP = fd“y K(x, 9)P(p) (3.8)

has a well-defined Az—0 limit if the higher moments of the
stochastic noise do not violate (3.5):
P(x) =3l f'x)P] + 4 i gL S7x)P).  (3.9)

By comparing (3.9) and (2.7) we find easily that the
Langevin equations

xp, =x}+JArgk, (3.10a)
7E = VAT [Fﬂ(x )+ 3, (JEE " (x,)
\/g(x
(3.10b)
e =2kT1g*(x,)6,., » (3.10¢)

Wl e o ~0(1/AF )M 2
describe the process (2.6). Equations (3.10) can be rewrit-
ten by shifting the random variables 7% by their mean values

AT av(&g"”)]

xh o =xh +At[F"(xm) +

ve(x,)
+VAr 94, (3.11a)
7 =0, (3.11b)
nhnn =2kTg* (x,)d,., - 3.11¢c)

Here the corrections to the second moment (3.11c) are
irrelevant because they are of higher order.

Equations (3.11) describe a covariant Langevin equa-
tion. This covariance property allows us to perform a change
of coordinates at every step, and in particular we can always
choose an inertial frame, whereg“*(x) = §#*and d, g**(x)
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=0, as will be the case in Sec. IV.

IV. STEP BY STEP COVARIANCE OF THE LANGEVIN
PROCESS

It is of course possible to check explicitly that the Lange-
vin process described by Eq. (2.10) is covariant.

Let us consider the average jump taken at the mth step.
From (3.10) we have

Xho1—Xh
— VAT TE
4 [F”(x"') + 9,(8*(xm )V 8(x)) ]
g(x,,)
(4.1)
(X —xEYX 1 —x5) =Ar2kTg*(x,,) .  (4.2)

If we now perform a change of coordinates y# = y#(x) then
the uth step will be described in the y coordinate system by

Yot =V = P(Xpm 1) —2¥(x,) . (4.3)
Expanding the function y*(x,, , , ) around x,, we obtain
YE =V

=9, PH(X) (s —%0) +40, 8, p*(x0,)

—X%) 4 o

X (Xp 1 — X0 ) (X7 4y

=Atd, y"(x,,,)[ —F(x,,)

3,(8° (%, WE L) ]
\/g(x

+ A3, 3, y*(x,) [kTR™(x,)] . (44)

The last two terms combine in the covariant Laplacian and
we have

H(x,,)

29

koL — YE=AF(x,)

ym+1 +Atvy“(xm) .
(4.5)

The first term is clearly the force expressed in the y-coordi-
nate system, and the second term can be written as

At [
g7 (yNg' (y) —]
Vg'(y) 9

m

= A lg™yegnl. (4.6)
\/g'(y)

The expression for the width in the y system is even simpler:

(Poas1 = Vo) Y1 — Ym)
=0, p*(%,,)9, ¥ (x,,) (x5 o1 — x5 ) (x5 1 —x5)
=2kTg"*(y..) . 4.7)

V. LATTICE GAUGE THEORIES: AN EXAMPLE

We consider the Langevin equation (3.11) on a group
manifold. At every step we parametrize the manifold in the
following way:

U=e"TUy, (5.1
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where U, is the instantaneous position in group space. We
want to compute g?(xy) and d, g9(x)/x = xy, with x,
=0. The line element generated by the Haar measure is
given by

ds =} Tr (dUU ~")* = g, (x)dx'dx’.

Next we express dUU ~! as a power series in x, where

(5.2)

dUU'=(dxT) + i[xTdxT}+o(x?). (53)
From (5.2) it is easy to show that

8;(0) =4, (5.4a)

J, 8;(0)=0. (5.4b)
Using (5.4) to (5.5) the Langevin equation (3.11) becomes

Xyi1 =Xy —AtF '(xy) + ‘/Kt—"]jv(xN) , (5.5a)

v (xy) =0, (5.5b)

Ty 0iy =2kT8%8,, (5.5¢)

but xy =0 and the N + 1 step on the group manifold is
described by

Uy,1 =exp[ — AtFi(xy) + VAt 9, T | Uy, (5.6)
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where
Fizg1 95 =(T"U)ab( as )
Oxt | x=xy aU,,,,

This Langevin equation for lattice gauge theory has been
studied by many authors.?*

(5.7
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Starting from the affinely parametrized supersymmetric Dirac particle model a Grassmannian
path integral expression for the propagator of the Dirac equation, minimally coupled to an
external electromagnetic field, is derived. A purely “bosonic” path integral representation of the
propagator of the iterated minimally coupled Dirac equation is also obtained. It appears that a
Nicolai mapping exists, even in a formal sense, only in the case of a constant external field.

I. INTRODUCTION

The history of attempts to construct a classical model of
the Dirac electron is a long and intriguing one (see Refs. 1
and 2 for early references). Three different reasons for this
continued interest can be identified: (i) aesthetic ones, (ii)
the search for a toy model of field theory (mainly in the
context of supersymmetry), and, last but not least, (iii) the
desire to learn something about the Dirac particle itself. A
minimal requirement for considering a classical electron
model as “correct” is that when quantized it should give rise
to the Dirac equation. Until recently, the only models that
fulfilled this requirement involved anticommuting numbers.
Out of these we mention the model of Berezin and Marinov'
whose action is invariant under arbitrary reparametrizations
of the evolution parameter and exhibits a gauge supersym-
metry, and the model of Di Vecchia and Ravndal,® where the
parameter is fixed up to affine transformations and there
exists a global supersymmetry. The most recent upsurge of
interest in this area is due to the fact that models involving
only complex numbers have been found. We refer to the
work of Barut and collaborators,**> who succeeded in con-
structing a classical action with the desired properties, and
to the work of Jacobson et al.,>” who extended Feynman’s
checkerboard path integral® to 3 + 1 dimensions and also
constructed the stochastic process related to this path inte-
gral via analytic continuation. (Strictly speaking the latter
approach does not define a model since there is no classical
action involved in the checkerboard prescription.) One
might take these results as an indication that “anticommut-
ing c-numbers are an unnecessary addition to mathematical
physics.”® We feel, however, that simplicity and predictive
power are also relevant criteria for the selection of a model,
and in this respect the globally supersymmetric model® is
unsurpassed. It is the only model in which so far the minimal
coupling to an external electromagnetic field and to an exter-
nal gravitational field including torsion could be incorporat-
ed.” Most remarkably, these couplings are uniquely deter-
mined by the supersymmetry. It seemed therefore
interesting to derive a path integral expression of the Dirac
propagator from this model.

In Sec. II of this paper we briefly review the model of Di
Vecchia and Ravndal and introduce a pseudo-Schrédinger
representation for its canonically quantized version, which is
more general than the Dirac representation. Based on this
representation, path integral expressions for the Dirac pro-
pagator and iterated Dirac propagator in an external electro-
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magnetic field are derived in Sec. III. Finally in Sec. IV we
address the question of whether the fact that the path inte-
gral for the iterated propagator can be reduced to a “bo-
sonic” one can be interpreted in terms of a Nicolai mapping.
We find that a rigorous version of the mapping exists only for
the free particle and even a formal version appears to exist
only in the case of a constant external field.

il. SUPERSYMMETRIC QUANTUM MECHANICS OF A
SPIN-} PARTICLE

In the model of Di Vecchia and Ravndal® the classical
spin degrees of freedom are described by a four-vector with
real anticommuting components £ °. The free-particle La-
grangian is

L= (5%/2) — (i/2)EE. (2.1)

The dot denotes differentiation with respect to a parameter
A, which is equal to s/m if the equations of motion are ful-
filled, where s is the proper time and m the mass of the parti-
cle; A is well defined even if m = 0, in which case it is an
“affine parameter.” The Lagrangian (2.1) is invariant (up
to a time derivative) under the supersymmetry transforma-
tions

Ox® = je£°, (2.2)
867 = ex®. (2.3)

These transformations can be implemented as ““supertrans-
lations” in a superspace formulation of the model, where in
additionto A there appears an anticommuting evolution pa-
rameter 6. Note that in contrast to the supersymmetric rela-
tivistic field theories no spinors appear here at the classical
level. The “simple” supersymmetry (to be consistent with
current terminology in supersymmetric nonlinear o models,
one should call it ¥ = | supersymmetry) embodied in (2.2)
and (2.3) may be generalized to an “extended” one; the re-
sulting theory in the N = 2 (alias N = 1) extended case is a
relativistic extension of Witten’s version of supersymmetric
quantum mechanics'® and provides a classical model of the
photon.!!

Canonical quantization of the model yields, in a
straightforward manner, the Dirac theory: The pseudoclas-
sical Dirac bracket®!?

[£° £°} =i 24
is replaced at the quantum level by the Clifford algebra rela-
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tions

{éa, g‘b}=ﬁ17“b. (25)
Thus the quantum spin variables £ * may be represented by
(%/2)"/? ¥°, where y° are the Dirac matrices, and this repre-
sentation is essentially unique. However for our purposes it
will be useful to transcend the standard notion of an algebra
representation and to consider as a representation of (2.4) a
space of functions defined on a Grassmann algebra. This
Grassmann algebra will be an analog of the configuration
space of the x variables. We stress that the £ have to be
considered as phase-space variables and that no natural con-
figuration space exists for the spin variables.! Nonetheless,
due to the even dimensionality of space-time, it is possible to
identify “position” and “momentum” variables by exhibit-
ing the pseudosymplectic structure defined by (2.4) in its
canonical form. We therefore define Grassmannian “coordi-
nates” ', £ and “momenta” B;, B by

l=2—~l/2(§0+§3)’ é—ll=2—1/2(§l+i§2)’ (26)
By =2"YHEC—E), By=2""A-E'+iED,
(2.7)
obeying the bracket relations
(4, §°}=0=[B,, Bz}, (2.8)
[;A, BB} = i5AB (2.9)

(4, B=1 or II). These relations become Heisenberg-type
anticommutation relations upon canonical quantization and
we are going to construct the (pseudo-) “Schrodinger” rep-
resentation of them. There is a certain amount of arbitrari-
ness in the definition of the £ “ and B, : Any set of null vectors
(two of them necessarily complex) {k, I, m, n} with
k -1 =1=m - nand all other scalar products vanishing pro-
vides a possible set {£ -k, £.1, £-m, £ - n} of coordinates
and momenta. It will be seen shortly that all choices lead to
equivalent (though not identical) representations. The fol-
lowing representation of the quantum variables suggests it-
self:

Eh F@)-RIEAF ),

2 J

Ba: f(§)-—>ﬁ”2:9?f &) .
Here f is an arbitrary analytic function of £ ' and ¢ ™. The
most general one is of the form

f) =a,+¢'a+ e+ 5 Ma,, (2.12)

where the g, are arbitrary Grassmann numbers. The Dirac
representation is obtained from the § representation by spe-
cializing to complex a; and having them comprise the spinor
¢ = (a,,a,,a;3,a,). The definitions (2.10) and (2.11) imply,
then,

&% yH/2)'? vy, (2.13)

where the y* are a particular realization of the Dirac matri-
ces.

(2.10)
(2.11)

In order to complete the quantum kinematics for the
spin variables we have to define a scalar product in our repre-
sentation space. We note that £' and 3, are real and that
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Bu = — £"*. Therefore d /3¢ ' must be Hermitian and
a =
—_—— — 11

all ’

the bar denoting the adjoint. These properties determine the
scalar product up to a constant factor

fo ) = j de* dgts det e~ paf,

(2.14)

Ef dG()f Y - (2.15)

This scalar product involves Berezin integration with re-
spect to the anticommuting variables and the Grassmann
involution * defined such that (ab)* = b *a* for arbitrary
Grassmann numbers g and b (the £ ® are constrained to be
real, £°* = £°). For the spinors ¢ corresponding to the
pseudowave functions f the scalar product (2.15) implies
exactly the Lorentz invariant

Dy = Y1 BY,, (2.16)
01 0 0
1 0 00

B= o 0 0 1 =9°. (2.17)
0 01 0

So far we have considered only the quantum representation
of the spin variables. Of course the full representation space
is the tensor product of the space just defined with a standard
representation space for the translational degrees of free-
dom.

The dynamics of the particle is governed by the Hamil-
tonian H generating translations in the parameter A. But His
determined by the generator Q of the supersymmetry trans-
formations (2.2) and (2.3) via

(Q,0}=2iH, (2.18)

and therefore all the information about the dynamics is al-
ready contained in Q. In particular the quantum-mechanical
mass-shell condition

H|)=m¥2)]) (2.19)
is a consequence of the eigenvalue condition
01)=m#/2)"). (2.20)

The latter is just the Dirac equation.

It is amusing to observe (although this will not be need-
ed in the rest of the paper) that the “bosonic” and “fer-
mionic” states with respect to the supersymmetry are just
the states | + ) of definite chirality,

El£)=+#/)|+), (2.21)

be=ib b &8, (2.22)
as

{0.&}=0 (2.23)
implies

Ol +)~|=) Q|=)~|+). (2.24)

Consequently the Witten index'? in the Dirac representa-
tion,

Tr( — 1)F =Trys (2.25)
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(F denoting the fermion number operator), just coincides
with the usual notion of the index of the Dirac operator. This
fact lies at the basis of an alternative proof of the Atiyah-
Singer index theorem for the Dirac operator on a Rieman-
nian manifold.™

11l. DERIVATION OF THE PATH INTEGRAL

EXPRESSIONS

In this paper we are interested in the inverses (putting
#i = | from now on)

QH—m>+i0)~'= — -;-f dA e~ mAr2gHA (3 1)
0
(2Y20 — m +i0) !
= J dé e "R — m? 4 i0)~!, (3.2)

whose integral kernels in the Dirac representation are the
propagators of the iterated and simple Dirac equation, re-
spectively. The mtegratlon variable 6 in (3.2) is anticom-
muting, and 0Q = — QB In Egs. (3.1) and (3.2) we have
already indicated the manner in which these propagators
will be represented, namely via path integral expressions for
thekernels of exp (1HA) and exp (6Q + iHA). These kernels
are matrix-valued two-point functions, and it is this matrix
character that presents a challenge to the construction of a
path integral representation. In the context of the model of
Berezin and Marinov,' Ogielsky and Sobczyk'® had to use
the notion of symbol of an operator (introduced in Ref. 1)

J

(x", E"A X, E50)=(x", £ "|ePHx', £7) .

Using (3.7) we may write this as

for this purpose. Due to the even dimensionality of phase
space, in our case we can dispense with this tool and work in
the £ representation instead.

We introduce the states |{,) = |£ 8, £0*) represented

by
8, (§) =({"=4o)(1 =515, (3.3)
and obeying
£'l6o) =£5160) (3.4)
EUIEo) =E8*(5o) (3.5)
(ol £} =15o) - (3.6)
One easily checks the completeness relation
= [1) a6 3.7

Therefore

.0, = (£101£)

- f j (AIENGENE0 1EMGUEN G
(3.8)

Equation (3.8) shows that the matrix elements (¢, |0 |{,) of

aspin “observable” in the § representation indeed contain all

the information necessary tg construct the corresponding

spinorial matrix elements g, 0¢2 (with ¢, and ¢, the spinors

corresponding to f; and f;) in the Dirac representation.
Consider now the matrix element

3.9)

(x", § A X, £150) = J dx - d*x, (x", £ "|ex,, £,)dG(,)

X s En €7\ X0 1y Eu 1 Vel CaleBelx, £)AG(E ) (X, Elee|x', £7)

e=A/(n+1).
We restrict ourselves first to the free-particle case. Then

H=p%2,

L€ PN S |em‘|xk, Si) = (x40 lemslxk)<§k+1|§k) .

(3.10)
(3.11)

(3.12)
(3.13)

As usual we express the first factor on the right-hand side (rhs) of (3.13) as

(-xk+1 |e'ﬁs|xk> = j dpy 1 dps <xk+ 11Pe+ 1 )<Pk+ 1 |ei§ElPk)<Pk lxk)

4
=f (271;4 exp[ip(x; — X, 1) Jexpli(p?/2)e] = — (1/277€*) exp[ — (i/2€) (x4, 1 — x,)?] -

Similarly we can write the second factor as

<§k+1|§k>— —fdG(B)CXP[ —BI(§k+1 gk)]eXP(ng i1 +BII§H* '

dG(B): = dpB, dB, dB% ¢ P°H
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(3.14)

(3.15)

(3.16)
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Now
— T+ L) BB Y =B — )+ Bu +BRE™
= _iﬂabga(§k+l "§k)—%§ (§k+l —§k)+7§ (§k+1 ‘gk)+(’/2)§l(§i+§’2<+l)
+ DG L +EL DE— B~ UDELEL — (/DL L (17

If we assume for the moment that £, = £(ke) with £(4) differentiable and that £ = £[ (k + })€], then for small € (3.17)
becomes

— (6/2) (b E* +EE>+E%€0) + 0, (3.18)
i.e., — e times the spin part of the Lagrangian (2.1) up to a total derivative. Therefore in a formal sense
A
(x", & " e |x, §')~f@ [x] 9 (& ]exp( - if LdA ’) . (3.19)
0

The rigorous result is

” » ’ ' d4 i xk+l — X 2
@6 Al 60 = - | (n — z)dG(ﬁm) 11 dG(;odG(ﬂkM)]exp[k [_76(_.;.__)

—Briirn@ker =6+ 6K 1Bkt +ﬂ1*1,k+1/2;}(1*]] , (3.20)

wherex, =x', §o=¢", x,,, =x",and{, . , =& . Note that there is one 8 integration more than there are £ integrations,
since the result is an odd Grassmann number. Of course the Grassmannian part of the integration can be performed trivially,
and in virtue of (3.7), (3.10), and (3.13) we have

(x", §"A X', £50) = Ko(x", X, A6 "IE"Y (3.21)
where Ky (x", x",A) is the proper time evolution kernel of the Klein—-Gordon equation. Note that the kernel
<§”j§l>=(g-nl__grl)(l__;;dl;:ll*)’ (322)

corresponds exactly to the unit matrix in the Dirac representation via (3.8) and that we therefore indeed obtain the iterated
Dirac propagator by combining (3.20) and (3.1).

In order to obtain the Dirac propagator itself we need the matrix element

<x", é_ n; /L 0 lxl9 é—/; 0’ 0>E<x", ; ” |eifi)» + 0@ le, ; ,) . (3'23)
Since a is a constant of motion we can represent this matrix element by an expression like (3.10) with the only difference that
one of the factors (x, , 1, $y . 1 |€7|Xx, &) has to be replaced by

Xip1s §k+1|eme+og e §xd = (xe 41 |elﬂelxk><§k+ 1 'eﬂQ 1$i) - (3.24)
The supercharge of a free particle is

Q=p.L =pas" +PBu, (3.25)
where we have introduced

p=2""Po+py), pPu=2"""7,—ip)), (3.26)

PP=2""py—py), P'=2""—p—ip)), (3.27)

and a summation over 4 = I, II is understood. We have
<§k+l|eeg|§k> = (e le) + 9(P1§k§k+1 +p Ha —§k+1§n*) - 6(§k+1 _gk)(.pllgk-r-l —Pngn* (3.28)

—jdamexp[ CB(EL e~ D) LN, By +B R

Xexp[0(pi&h —pBr +P"Bu —PuB )] - (3.29)
Now
P =B +P"Bu —puB Yl =PL +pEC+pE Pt = Q(P’ &8 . (3.30)
Therefore

2 ~
<xk+l’;k+l|em€+ag|xk,§k) —f_‘—eXP[’P(xk —Xkp1) +i£_€]<§k+1|eml§k) = 217262 fdG(Bk+lﬂ)
Xexp[ —Brr+1& k1 &)+ Bukrin Bk 126 ]

i (X —X
XCXp[—-EI-—e(ka —xk)z*eg(ﬁl;—k$§k’ﬁk+l/2)]r (3.31)
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and

(", £" 4, 0%, £ 0,0) ~ f P [x] -@lflexp(—GQ L(Ao), £(Ao)] — i j Ld./z'). (332)

The last expression is formal; A, is an arbitrary value of the evolution parameter with 0 < 4, <A ,. Apparently the expression
(3.32) is noncovariant. The rigorous result (3.20), however, with one summand of 2} _, replaced according to (3.31), is
covariant because the noncovariance of the factor-ordering of Q@ =60Q, + Q_6, O, + Q_ = @, is compensated by the
noncovariance of the measure dG(&, )dG(By . 1, )dG (£, .. 1 )- Integrating the matrix element (3.23) over 4 and 6 according
to (3.2) yields the desired path integral representation of the free Dirac propagator.

The results obtained so far can readily be generalized to the case of a Dirac particle minimally coupled to an external
electromagnetic field. In this case the Lagrangian and Hamiltonian read

= (X%/2) + edx — (i/2) (£€ — eF,,£°€"), (3.33)
and
H=14(p—ed)*— (ie/2)F,£€", (3.34)
respectively. The path integral expression (3.20) generalizes to
d4
X", §"A X, £50) = (H i )dG(Bl/Z) H dG($, )dG(Bk+l/2)]
k=1 2m€? k=1
Xexp[ Z [ (xk+1 —x)? _L;'_(A(xk) + A D) = %) = Briv12G ke —65)
F B Bkl B =i e (50 -5 Gns G 1B || (3.35)
where
§26.¢'\B) = (/2B - 5B, (3.36)
S48\ = —~ (/D) Bus ™ +5™B 1), (337
S LB = W/2)[B(E "+ 5™ =SB K —6Bu], (3.38)
S8 B) =4[B (& =5 =B R +EBu], (3.39)
SBGELB =) BT +E™) + LB Y + L8], (3.40)
SPGB =W [R/ET L") +$BE —EBu] - (3.41)
If we now assume again that §, = £(ke), with £(A) differentiable, then
S“(;k’§k+l,ﬁk+l/2) =i£%°+ 0(e), (3.42)

and therefore the formal correspondence (3.19) remains intact.
The Berezin integration in (3.35) can be carried out explicitly using the completeness relation (3.7). With the help of
(3.8) we obtain an ordinary path integral expression for the spinorial matrix elements X5 (x”, x";4) of the evolution operator

-2
Kg(x",x54)= —,.ll.nl Ul 27262 kI_Ilexp( ie—;—Fa,, (x, )a"”),,,,]
XCXP[ i [——l'(xk+l —xk)z_ii(A(xk) +A(xk+1))(xk+1 —‘xk)]] (3.43)
K=o 2e 2

A . A
~f.@ [x][Texp[—i—%f dxl’F,,b(x(/l’))a“"“ exp[——éj d,i'(x2+2e5cA)]. (3.44)

0 afl (1]

I

Here 0*® = iy'%y*), and T denotes chronological ordering  we conclude that one simply has to add

(with respect to A ') of a product of matrices.
The modification of (3.35) that is necessary to yield the X1

kernel (x", £ "; 4, 0 |x’, £’; 0, 0) required for the minimally —6Q (—e——— Sres Br+ 1/2)

coupled Dirac propagator is very similar to the modification

embodifad in Eq. (3.31) for. the free particle. Since the super- (for one value of k) to the exponent {---} appearing on the

charge in the present case is rhs of (3.35). Note that Q as a function of x and £ is the same
Q= (p—ed)f, (3.45)  here as in the free-particle case.
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IV. ON THE EXISTENCE OF A NICOLAI MAPPING

The possibility of integrating the anticommuting varia-
bles out in the path integral (3.35) raises the question of
whether a Nicolai mapping'® exists for the type of supersym-
metry present in the Dirac particle model under considera-
tion. The question would be answered in the affirmative if
some combination of the matrix elements (3.43) could be
represented by a Gaussian path integral. Naively one would
expect this combination to be

}im d*x' d*x" TrK(x",x"; A),
but it is apparent from (3.43) that neither this nor any other
combination of matrix elements has the desired property in
the presence of an external electromagnetic field, nor does
(4.1) have a neat expression in terms of the { and B varia-
bles. It seems rather that one has to inspect every matrix
element K, separately with respect to the existence of a
Nicolai mapping. A similar observation was made recently’’
in a rigorous investigation of Witten’s supersymmetric mod-
el. In our case this observation may be explained by the exis-
tence of a spontaneous breaking of Lorentz symmetry: There
is no quantum state that corresponds to the invariant classi-
cal solution £°(4) =0 for the spin vector. Hence all the
matrix elements

{out|in) ,5: = P" =0, o |p'=0,8; — »)

4.1)

(4.2)
- f d*% d%" [PK(", % 0)] (4.3)
abd

may be considered as “vacuum persistence amplitudes.” In
(4.2) we have introduced in an obvious notation the four
spin states |a) corresponding to the pseudo-wave functions
f&)=1¢¢"and £¢Y, fora = 1,2, 3, and 4, respec-
tively [cf. the remarks following Eq. (2.12)]. Equation
(4.3) follows from (4.2) by virtue of (2.16) and (2.17). The
amplitudes (4.2) will actually be divergent unless they are
zero, on the other hand

Ao

K(x",x:A) - 0. (4.4)

It is instructive to represent the amplitudes (4.2) by
Grassmannian path integrals. These representations are im-
plied by (3.35) and the following relations:

2y =f £)dG(&) , (4.5)
2)=1=0), (4.6)
[3) =18=0), (4.7)
4) =f 18)dG(B) , (4.8)
where the state |8 ) = | B, B %) is represented by
INGETAI SRS T3P (4.9)
Thus, e.g.,
[PPK(x", x'; ) 11
=ffdG(§")(x",§";/1 ¥, B’ 0)dG(B") . (4.10)
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In the free particle case, the Berezin integrations are
trivial, yielding just the factor 42, appearing on the rhs of

[PK(x", x5 A1) ) 05 = Vo Ko (X", X3 1), (4.11)

and we are left with the standard path integral representa-
tion for the scalar propagator K,,. From this, it may be con-
cluded that a Nicolai mapping exists and that it is simply the
identity, but apparently no such conclusion is possible in the
case of the electromagnetic coupling due to the more compli-
cated structure of the rhs of Eq. (3.43).

It is amusing to observe that the more formal manipula-
tions usually adopted in field theory give a different result. In
the case of a constant external electromagnetic field, it may
be written formally

(out|in) ~f.@ [x] Z [£]
Xexp[ - %f_: (3% + edx)dA ]

Xexp[ —%fjw §(%—eF)§dA ] . (412)

The integration over the Grassmann variables yields formal-

ly
1/2 1/2
[det(i —eF )] = det(i —eF ) s
dA di

which is the Jacobi determinant of the linear nonlocal trans-
formation

(4.13)

d 172
x—y[x] =(—~—eF) x. (4.14)

dA

This is the Nicolai mapping obtained by formal consider-
ations, resulting in the formal expression

(out]in)~J.@ [y]epr‘w »* gd,-i—yd/l]. (4.15)

Apparently it is not possible to construct, even perturbative-
ly, a Nicolai mapping in the case of a generic (i.e., noncon-
stant) external field, because in general the electromagnetic
field tensor F§ (x) is not a Jacobian.
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A class of functions on the primed spin bundle of complexified Minkowski space, defined by
V.4 9f /dm, =0, isintroduced and it is shown that these functions bear a close relationship to
twistor functions, especially through their use in describing massless fields.

I. INTRODUCTION

The basic constructions in twistor theory'~ treat right-
handed and left-handed fields separately. If a construction
for right-handed fields is carried out in twistor space, then
the same procedure in dual twistor space will provide the
corresponding result for left-handed fields. In order to de-
scribe the mixed case of fields that are neither right-handed
nor left-handed it is desirable to be able to treat both cases in
terms of constructions on the same underlying space. These
considerations lead naturally to a dual notion of twistor
functions and provide the motivation for this paper.

Il. THEORY

Let F be the projective primed spin bundle over com-
plexified Minkowski space M and introduce coordinates
(x*4",m,.) on F. (We use the two-component spinor nota-
tion* freely and, generally, follow standard twistor terminol-
ogy>.) The variable 7. is homogeneous (i.e., 7, and A#w.
refer to the same point for any nonzero scalar A ) and a func-
tion on F'is said to be homogeneous of degree & if and only if

/4

= kf. '
ar,. f. (D

Ty

Twistor functions may be defined as local holomorphic func-
tions on F satisfying

T4V, f=0. 2)

Here Fmay be factored by the integral surfacesof 7'V . to
obtain twistor space and then functions on F satisfying (2)

are equivalent to unrestricted functions on this twistor
space. The integral surfaces are given explicitly by x** 7.

= const so that a twistor function f(x*4’,7,.) depends on
x*4" only through w* =x**"7,., whence (»* ,7,. ) provide
coordinates in twistor space.

Definition’: An antitwistor function / homogeneous of

degree k is a holomorphic function on F homogeneous of
degree £ satisfying

¥
Vi
i oy

=0. (3)

If k=0 then we also require Cjf =0 for O=V*'V .
[which already follows from (1) and (3) for k #0].

Note that antitwistor functions cannot be represented as
unrestricted functions on any factor space of F, i.e., “an-
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titwistor space” does not exist. (This follows since the pro-
duct of two antitwistor functions is not necessarily antitwis-
tor.) Though V- 3 /37 ,. is a second-order operator, it is
only first order on twistor functions as follows.

Proposition: (a) If ¢ is a twistor function homogeneous
of degree k then V,,. t /9 ,. is a twistor function homo-
geneous of degree k — 1 given by (k + 1)3t /dw*.

(b) If g is an antitwistor function homogeneous of de-
gree k then 7'V ,.a is an antitwistor function of degree
k+ 1

Proof: By direct computation. For (a) note that for any
twistor function t, V.t =1m,. dt/dw*. 0

We next introduce some sheaves and an operator .S re-
quired in the proof of the main results. In all cases, the local
sections of the sheaves are holomorphic functions with
further restrictions given below.

Sheaves on M: M(y...p is the sheaf of functions
#¢5-.. p-, (x) taking values in the indicated spin space (and
similarly for other possible spinor indices); & , ... ;- is the
sheaf of right-handed massless fields (V44 ¢, 5. p- = 0);
Z 45..p is the sheaf of left-handed massless fields
(VA4 ¢ ,45..p = 0); L4 P is the sheaf of solutions of the
multitwistor equation

VE(E’¢A ‘B'.D") — 0 fOl' ¢A ‘B’ D’ — ¢(A 'B'~~-D’).

Sheaves on F: 7 (k) is the sheaf of functions homogen-
eous of degree k; ©#“ (k) is the sheaf of functions £ (x,7)
taking values in the indicated spin space and homogeneous
of degree k; .7 (k) is the sheaf of twistor functions homogen-
eous of degree k; .7 (k) is the sheaf of antitwistor functions
homogeneous of degree k. The  operator
S: O(k)—>&(—k—2)fork> — 1isdefined as follows. If
fe? (k) thenthe k-fold derivatived* f /3 . -- . is homo-

geneous of degree 0, whence
af

37TA [ aﬂ-D' aﬁEl

=0, 4)
and, sinced* f /3. - I issymmetricinits spinorindices,
(4) gives

af

Oy Omrp O

=7t P T g (xM e ), (5)
with g homogeneous of degree — k — 2. We set Sf=g.
Lemma:
(a) 7' (Sf) =S(3f /dnm,.).
(b) I(Sf)/Omy = — S(7*f).
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(c) There is an exact sequence

Ta Mg Tp

, s
O /A D" O(k)—0(—k —2)-0.

Proof: (a) and (b) may be derived directly from the
relation (5). (a) follows easily but (b) requires a messy cal-
culation. An easier way to obtain (b) is to note that, using
Cauchy’s integral formula, one may write

_(k+ 1) f(xAAI,WA')

T m (E4m, )rt?2

where the contour surrounds the poleat 7. =£,.. (b) fol-
lows immediately by differentiating the integrand. The ker-
nel and image of S are easily identified using (5). m|

Note that S acts only on the 77, variable (and is essen-
tially the operator edh®). By introducing V,,,. on each side
of (a) and (b) in the lemma, the following squares com-
mute:

—

SFx €40 ™ dry.,

L\

& (k) O k+1)

S S (7
-V, 8/0r,

O(—k—2) a0 oV —k—3)

Theorem 1: Let k>1.

(a) The sequence (with k indices 4 '.-- D)

Ty o Tp-

. s
0% ,p — LK) —T(—k—2)—0

is exact.
(b) # (k) admits a resolution

0o (k)= (k)
Vo /07, V4q- 8797, v4.3/0my
(k) Zalk—1) SO k=1) o O(k—2)>0.
S S ,  (6)
V., In other words, this sequence is exact.
O(—k=2) O4(—k—1) ¥ Proof: Consider the following diagram:
0 0 0 0
kvy k — 1)V4%
0 '?A‘?'«-D' /(A'B“"D'J . ‘IA(B‘C’-"D') ( ) /(C""D‘) Y
A e P A e P 2 e 7€ e
A
0 (k) L ) SV i/ PP P 0.
s s s s
" M vZ]
0 T( k=) F(—k—2) ™ Van Z,(—-k—1) Vs QY 3 P
0 0 0 0

Using (6), the diagram is easily seen to commute. By the lemma (c) all columns save for the first are exact and this
conceivably fails only at </ (k) and 9 ( — k — 2). Similarly® only the middle row may fail to be exact at &, (k — 1) and

& (k — 2). By standard diagram chasing arguments’ it follows that the diagram is exact throughout. O
Theorem 2: Let k> — 1.
(a) The sequence (with k indices C'-- D)
T T S "A'VAA' ”D‘VDD'
0—-.2¢"2 o~ JT(k)—=A(—k=2) — Z,..p—0
is exact. (In case k = — 1, the term .% is taken as 0.)
(b) & ( — k — 2) admits a resolution
\ -V V4. 3/3m,
O (—k—-2)>0(—-k-2) — O,(0—k—-3) —> O(—k—4)-0.
Proof: Consider the following diagram:
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0 0 0

l V(B' vAA'
0 30’ D /(C'...D') 4 ‘l'(‘B'C'mD') /(4'3'...1)') 0

T+ Tp- Moo Tp: T+ Mp- Ty Tp:

— Y )
0 T (k) o (k) = Oa(k+1) " Ok+De— 0
S s Y S
V5 3/3my V4. 9/9r,.

0 e A (—k=2) e O(—k=2) 22 % O, (—k—3)

Using (7), the diagram is easily seen to commute. By the
Lemma (c¢) all columns save for the first are exact and this
conceivably fails only at 7 (k) and o/ ( — k — 2). The bot-
tom row may fail to be exact at Z,(—k—3) and
& ( — k — 4) and the only other horizontal cohomology oc-
curs® at .# ®" 2", where one obtains the potential modulo
gauge description® of the sheaf of left-handed fields
Z 45.. p- A diagram chase’ now yields the statement of the
theorem. O

Remark: The resolutions given in the above theorems
and, indeed, the crucial parts of the diagrams used in their
proofs appear, in dual form, in certain Berstein—Gelfand-
Gelfand resolutions.®

Corollary: Let v: F—M be the canonical projection and
let UCM be open. The cohomology of «&(n) over
v~ Y(U) CFis as follows.

(a) For k>1, HY (k))=T(U,Z,..p-) are the
massless fields of helicity k /2, and H (« (k)) = O for j#O.

(b) Forky — 1, H(«(—k—2))=T(U, L P")
are the multitwistors of order k, H (& ( — k — 2)) =T'(U,
Z 45.. p) are the massless fields of helicity — (k + 2)/2,
and H/(o/ ( — k —2))=0forj#1,2.
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O(—k —4) e 0.

I Proof: Follows from the resolutions of Theorems 1(a)

and 2(b) and standard machinery.® a
To compare with the usual twistor description,>° all
cohomology on v~ !(U):
{massless fields on U of helicity n/2 > 0}
=H%od (n))=H"\T (—n-2)),
{massless fields on U of helicity — n/2 <0}
=HYT (n—2))=HY(—n)).
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The problem of the determination of the asymptotic density of states of the quark—gluon gas is
reconsidered. A general method emerges, which unifies and simplifies previous derivations that
can be found in the literature. It takes due account of various constraints on the configurations of
the system: colorlessness, conservation of electric and baryonic charges, zero total momentum,
and possibly some residual flavor symmetry. It is general enough to accommodate any constraint
associated to a compact Lie group. This is shown in full detail in the case of a direct product of
SU(N) groups. Explicit examples are completely worked out.

I. INTRODUCTION

The thermodynamics of hadronic matter at high tem-
perature has received great attention in the last years. Par-
ticularly exciting is the possible occurrence of a deconfining
phase transition at finite temperature. A theoretical study of
this phase transition should proceed in the framework of
quantum chromodynamics. However, this is a difficult task,
as long as the mechanism of confinement has not been under-
stood. A more phenomenological but also more manageable
approach, recently proposed,'” utilizes the description of
hadrons given by the bag model. There, the confinement is
enforced by the model. In this second approach, it is essential
to investigate first the high energy asymptotic density of
states of a bag. The practical way of doing it is to compute
first the partition function of a bag at high temperature, in
which limit it is legitimate to view a bag as a black body of
gluons, quarks, and antiquarks. The object of this paper is
precisely to reconsider this problem. Indeed, what we want
to do here is to simplify and unify previous derivations,*-
show how they can be extended to more complex situations,
and bring out a general method. The emphasis is therefore
put more on the method than on the results.

The physical system studied here is thus a plasma of
gluons, quarks, and antiquarks, contained in a volume ¥,
and maintained at a temperature 7 = 1/8. It resembles the
standard black body of photons, in that the particles in-
volved are free, massless, and have two spin states. It differs
from it by the appearance of new quantum numbers, color,
flavor, and electric and baryonic charges, associated with
new conservation laws. The first of these laws, color symme-
try, is exact, and furthermore, color confinement implies
that the only allowed configurations of the physical system
are those that are colorless (singlet states). As for the flavor
symmetry, it is not exact, and various models may be con-
templated. Concerning the conservation of the baryonic

) Equipe de Recherche associée au Centre National de la Recherche Scien-
tifique.

% Member of CONICET, on leave of absence from the Laboratorio de
Fisica Tedrica, Universidad Nacional de 1a Plata, C.C.67-1900, La Plata,
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charge, it is taken, like the conservation of the electric one, as
an exact law, and among the quantum numbers that charac-
terize the plasma appear the electric and baryonic charges.
All these constraints on the configurations of the system
have to be (and can be exactly) implemented in the calcula-
tions.

Besides, one can be led to impose further internal con-
straints on the system. For example, if flavors are assigned to
the quarks and antiquarks, some flavor group may be con-
sidered as a symmetry of the system, in which case its config-
urations are also characterized by conserved flavor quantum
numbers.

A last and important constraint comes from the fact that
a bag is viewed as a cavity with immaterial walls. This is a
situation quite different from that of the ordinary black
body, where the photon gas exchanges momentum with the
walls. Here, this exchange is not possible, and it implies that
the total momentum of the plasma is conserved, and vanish-
es in the center of mass system of the bag.

Let o( W,V,a) be the desired density of states of one bag,
at energy W, where a stands for the collection of all con-
served quantum numbers. It will be derived from the grand
canonical partition function Q( B,¥,a) through the inverse
Laplace transform
By + oo

a(W,V,a) =% dBe?"Q(BV,a). (1)

Tl JB,— i
The function Q( B,V,a) itself is defined by
Q(BVa)=Tr e "8, (2)

where H is the Hamiltonian of the physical system, and
where the projector 77, selects those configurations that are
allowed by all the above constraints.

We now turn to the construction of the projector.

First, let # be a Hilbert space and U(g) be a unitary
representation in #° of a compact lie group & . Letjlabel the
irreducible representations of &, and let 4 , be the projector
on the subspace of all the states that transform under the
representation j. Then

7, = d,.Ldp(g)xj @) *U(g), 3
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where du(g) is the normalized Haar measure on ¥, and d;
and y, (g) are, respectively, the dimension and the character
of the representation j. For example, projecting out on the
colorless configurations of the plasma will be performed by
using this formula for the trivial representation, in which
cased; =land y;(g) = 1.

In the case of the group U(1), associated to a charge Q,
which takes on integer values g, this formula becomes

2 dé .05

?,= — %29 4)
? -7 217' (

Similarly, the projector on the states of zero momen-

tum, for a system enclosed in a volume V, is
d’R $.x
= — e‘ , 5 )
J‘ v V (

where P is the total momentum operator. (Strictly speaking,
this is true only for a parallelepipedic box, and periodic
boundary conditions. )

Formulas (3)-(5) proyide us with the building blocks
of the complete projector ﬂ

An alternative way of deahng with a conserved charge Q
is to introduce the chemical potential i@, and to define the
new partition function

O(B,V,b,6) =Tr P e~ PE+22, (6)
where b stands for the collection of all conserved quantum
numbers but Q. Let &(W,V,b,0) be the inverse Laplace

transform of Q( 8,V,b,0) through Eq. (1). Then obviously
o(W,V,a) may be recovered from o( W,V,b,0) by

do

—

To show how things work, we have chosen two particu-
lar models. In Sec. I, SU(N) color symmetry and flavorless
quarks are considered. In Sec. III, we introduce six flavors,
with an SU(3) color group, and an SU(6) flavor symmetryj

o(W,V,a) = = e~ “OG(W,V,b,0). @))

~ 3
(B Vv) =f d/z(g)f d R
SU(N) V

x{Tr, U, (g)exp( — BH, + iP, - R+ ivN,)HTr, U, (g)exp(

partially broken or not. In Appendix A, we give a very sim-
ple proof of a useful formula, previously established* with
the help of the Bargmann space formalism. In Appendix B,
we solve, in the case of SU(N) groups, the extremum prob-
lem that arises in the saddle point method repeatedly used
when performing the group integration in the asymptotic
limit. Appendix C deals with Gaussian integration on
SU(N).

Il. QUARK AND GLUON GAS, WITH SU(N) COLOR,
WITHOUT FLAVORS

We consider a gas of free massless quarks and gluons,
which transform under an SU(N) color group by, respec-
tively, the fundamental and adjoint representations. We as-
sume that the gas is an SU(N) singlet state, and has a ‘“‘bar-
yonic number” B (note that a quark has the baryonic
number 1/N). As previously explained, we also impose the
vanishing of the total momentum. Consequently, the com-
plete projector is

A A 3 ~
'@a — d#(g)U(g)fﬂe’PR
v V

SU(N)
xf :—Vexpw[(ﬁq—&.,—zva)], (8)
— 7 &

where 1'\\’,1 and J/\\"—, are the number of quark and antiquark
operators. Indeed, it will be more convenient to deal with the
conservation of the baryonic number by introducing the
chemical potential /v, as in Eq. (6). The relevant projector
.@ is thus built with only the first two factors in the right-
hand side of Eq. (8).

The Hilbert space of the gas has the structure of a tensor
product #°; ® %, ® %, of three Fock spaces of gluons,
quarks, and antiquarks. The trace involved in the definition
(6) of the partition function decomposes into the product of
three traces in the spaces #°, #°,, and #7;. Thus

Us(®)exp( — BH; + P+ R)}

—Bﬁa +tf’a -R—ivﬁa)}- (9

Here, the indices G, ¢, and g of the various operators refer to their restrictions in #°;, #°,, and #7.
The traces can be performed by using the following formula (see Appendix A):

Tr 2 ﬁ(g)e'2 = exp[ ¢Ztr In[1 :FR(g)e“']].

(10)

The upper and lower indices distinguish the boson and fermion cases. Here Aisasumof one-particle operators, and the
index a labels the eigenstates of A with eigenvalues 4,,, in the one-particle subspace. The operators Aand U (g) commute.
R(g) is the (irreducible) representation under which transform the one-particle states, and the trace “tr” operates on this

representation.
Now Q( ,V,v) takes the form
~ d3r
(B’ Kv) =f d ( ) =, o3 ®)
Q SUN) nie vigr V/B°

where we have set R = fAr, and

(2 )3
+trin[1 + Ry,q (2)exp]

1659 J. Math. Phys., Vol. 27, No. 6, June 1986

dp{ —trln[1 — R,y (g)exp[ —B([p| —ip-1)]]

—B(p| =) +iv]] +trin[1 + RE, 4 (g)exp[

(11)
—B(p|—ip-r)y—iv]]} (12)
Auberson 6t a/. 1659



In this formula, the X, of Eq. (10) has been replaced by
the standard approximation for large volume [2V/
(27)3]5d 3p (the factor 2 comes from the spin degeneracy);
we recognize the energy |p| of massless particles and the
fundamental and adjoint representations R4 and R,y of
SU((N).

To proceed further, we expand the logarithms, perform
the traces, and integrate over p. The gluon contribution to ®,
for example, becomes

O = (2 (7)) & i XMJ(gk)Jd3pe—W(lnl—m~r)

2V
R (1+r2>2 kgl k‘*’“"’(gk)’

where y,4; () is the character of SU(X) in the adjoint repre-
sentation.

Similar calculations for the quark and antiquark contri-
butions lead to the following expression of ®:

=ﬂ—i§;(—171’2—)2[02/(g)+%(g,v)1, (13)
where we have defined
1 & 1
% (g) '—"'Ekzlwxgdj (gk), (14)
0 _ Yk—
Vigv)=Re 3 (_7)4"— Yma (@), (15)
=1

With Ypuaq (8) the character in the fundamental representa-
tion.

As a function of g, © is a class function, and thus de-
pends only on the eigenvalues ¢” (j = 1,...,N) of g. The 87,
which vary® in ( —,7), are restricted by 2,6, =0,
mod 27. Then

i ete,,

i=1
N

Xuna () F — 1 =N — 1425 cos(6; —6)).
- (17

Now % and 7~ take simple forms if we introduce the follow-
ing functions’:

Xfuna (8) = (16)

Yaqi (8) =

|
u(f) = ——cos k6@
) k;l 2
A o 2( |t9|)2
=2 T of1-1) (l9|<2m), (18
% 120 . (16| <2m), (18)
) (_)k——l
v =Y — cos k0
=k
777' 17'2 2( 02)
=T _T 92(1-2) (18]<m. (19
720 24 0 ) (81<m. (19
We have
77,4 N
@(g)=(N—1)9—0+2u(9,.—6,) (20a)
i<j
N
7 (gwv) = 20(0,. + ). (20b)

i=1
We note that the measure du(g) is invariant by chang-
ing g into ¢2™7g, that is to say ,into 8, + 27/N. Conse-
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quently, in view of Eq. (20), Q( B,V,v) is periodic in v, with
the period 27/N.

Since we are interested in the partition function at high
temperature ( f—0), we evaluate the integrals of Eq. (11)
in the saddle point approximation. Thus we are faced with
the problem of finding the maximum of ®, when the 8,’s and
7 vary.

First, as a function of r, @ has its maximum at » = 0.

Next, we note that the function u(8) reaches its maxi-
mum at & = 0, mod 2. This trivially implies that % (g) is
maximal when g belongs to the center of SU(N), namely
when

01=92= (21)

As for the function 77(g,v), it turns out that it is also
maximal when g belongs to the center of SU(N). This result
requires a proof. It is, in fact, a particular case of a general
lemma proved in Appendix B, which in the present case
states that, at the maximum of 7"(g,v), Eq. (21) holds with
the integer n fixed by

—w/N<v +2mn/N<w/N.

=0y =n2n/N (n integer).

(22)

Because of the periodicity of O( B,V,v), we can restrict
v to lie in the interval ( — #/N, #/N), which implies n = 0.
Finally, for these values of v, ® reaches its maximum once,

for 8, = 6, = - = 0 = r =0, with the value
2 2 2
0, = mV[4N?+IN —4 N(l)(l——l—(l))]
68° 30 T 2 \r7

| (23)
The quadratic part of ® around this maximum is

()2

(24)

A®=—20_. 7 —

and in Eq. (11) we approximate ® by @, + A,0.

The integral over r is elementary. As for the integral
over SU(N), it takes a simple form® for a class function
S(6,,...,6, ). For a Gaussian function, we prove in Appendix
C the following formula:

f d/t(g)exp( - = 2
SUN)

i=1

) C(I—N’)/Z(HN—-IJ“)
C—w

(277.)(1\/ 1)/2‘/_‘
(25)

After straightforward calculations, we obtain the
asymptotic expression of the partition function at high tem-

perature:
2N +1 B _’V_ 2](1—N2)/2
G BVm), WMA[ oY)
X¢(V)—3/2(B3/V)(N2+4)/2
Xexp[§ﬂl3:p(v)], (26)
where
cp(v)=—(4N + 1IN — 4)———1’21——— —11,
m
A= 3\/'(1-[}\;—1!]‘!) a1
- JN 2m)t + 47 )
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We are now in a position to evaluate the asymptotic level
density o( W,V,v) at large W, by the inverse Laplace trans-
form of Q( B,V,v). This is most easily done by using the
following elementary formula:

1 o+ o0
. dﬂﬁceﬂw-kd,GB’
2im Jg, - ico

~ 1 d(l+Zc)/8W—(5+2c)/ae(4/3)(dW’)”‘
Wow 2027

We obtain

(28)

2N+ 1 (V)z (1—N>/2
3 \m ]
X¢(V)(3N2+”/B(I/W)(VW3) — (N?43)/8

xexp[ (4/3)@(v) VW3)4], (29)

W) ~ c[
W

with C = (27)/24 /16.

Like the function Q, &(W,V,v) is 2m/N periodic in v,
and the asymptotic formula (29) is valid for ve( — #/N, 7/
N).

This is indeed the result relevant for the thermodynamic
study of a gas of bags with nonvanishing baryonic numbers.
Equivalently, one could use the true density of states
o(W,V,B) with fixed total baryonic number B, given by

dv
—

o(W,V,B) = —INBYG(W,V,v). (30)

Here NB plays the role of the integer parameter g in Eq.
(7). Note that due to the 27/N periodicity of & in v, the
above integral vanishes except when B itself is an integer, in
which case it can be rewritten as

/N dv
—_—e

— /N 217'

o(W)V.B) =N ~NBG(W, V). (31)

This was to be expected, since the only color singlet con-
figurations have a quark number N, — N; that is a multiple
of N.

In the asymptotic limit W-» oo, if B remains finite, the
dominant behavior of o( W, V,B) does not depend on B. In-
deed, the only sensible asymptotic regime to look foris W, ¥,
and B going to infinity, at fixed baryonic density b = B /V.
The corresponding behavior of o( W, ¥, B) cannot be given in
a completely explicit form, and after all, we could satisfy
ourselves with Eq. (29). However, for the sake of complete-
ness, we give the asymptotic expression of o, which is ob-
tained by applying again the saddle point method to the inte-
gral (31):

0.( pV,V,bV) —~ (D/W)(VW:;) - (N’+4)/Sea( VW’)”"
W—co
(32)
where
o 4T a+cz,
3% (a + 2czo 4 c22)**
4N2+IN —4 N
( = st N C == —
180 12
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D 3\/3(3,”2)l+31v’/8 N—lj!
8(27T)N/2

X( 3 )(N’-—l)/2
AN + 1+ 3z,

(a4 2¢zy+ cz2)! + 378
[a+ (Ba—c)zg + 5]

j=1

, (33)

and where z,, a function of |b |*/> ¥ /W, is the unique positive
solution of the equation

2(2)/3( 1 + 20)4/3

34
a+ 2czy + cz; (34

- s-;’-;amb 1472,

Formulas (33) and (34) are valid as long as |# | does not
exceed some critical value that we did not calculate, but that

is smaller than 4(W /NV)*/%/3\27.

IIl. QUARK AND GLUON GAS, WITH SU(3) COLOR AND
SIX FLAVORS

In this section, we repeat the calculations of the preced-
ing section with the following changes. First, we restrict the
number of colors to N = 3, Second, we introduce six flavors.
We assume that the SU(6) flavor symmetry is broken only
by the electromagnetic interactions, so that the remaining
symmetry is the product of two SU(3) subgroups of SU(6).
The first, SU(3),, is the set of transformations that mix the
quarks u, ¢, and ¢ of charge 3, the second, SU(3),, mixes the
quarks d, 5, and b of charge — 1.

We decide to focus our attention exclusively on the con-
figurations that are singlet states not only of the SU(3) color
group, but also of the SU(3); XSU(3), flavor group. In so
doing, we are aware of the fact that this is not sufficient for a
thermodynamic study of a gas of bags, which certainly con-
tains bags with any flavor variance. However, the following
derivation intends to provide an example of the techniques to
be used in the last stage of the above mentioned thermody-
namic study.

Let us call N,, N,, N,, and N, the numbers of quarks and
antiquarks of charge § and — 1. If the total baryonic number
B and the total electric charge ¢ are fixed, it follows trivially
that

B=N,—N,=B+yg,
BzENz_ﬁ2=ZB—’q.

Therefore, the relevant projector is

P =

SU(3),

~ 3 ry
xf d.u(g")U(g”)f 4R ix
SU(3), v V

du(g) Uig"

(3)y

du(g)&g)f
sSU

(35)

Now, the Hilbert space has the structure of a tensor product
Ho@H, H; 0%, ® K . Asin Sec. II, the trace in
the definition (6) of the partition function decomposes into
a product of traces
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O(BYV.Em) =J du(g) du(g’) d,u(g”)J
SU(3), SU(3),

SUG3),
xTrG{/l}G (g)exp(
xTr, {U, ()0,
xTr, (U, ()T,

(g)exp( — B + zP—

. (8" exp(

d’R

~BH, +1'PGR)}Tr {D, (g)U (g )eXp(—BH +1P R+iEN)}
— iEN)¥Tr, (T, (@)D,
“ﬁHa, + ’PazR -

BH, + B, R +imN,)}
(36)

1) . (87)exp( —
iﬂﬁz)}a

where i£ and in are chemical potentials associated with the conservation of B, and B,. Equation (10) allows us to compute the

various traces. The one in 77, , for example, reads
2V
Tr {.} =eX [__
9 p ( 2 T

_ 2V (_)k—l l
=l TR 2

Notice that the quark ¢, transforms under the direct product

Rfund (g) ® Rﬁmd (g')

The other traces are calculated in the same way. Using
the functions % and 7~ defined by Egs. (14) and (15), we
finally obtain the following expression of the quantity ©:

4V 1
P a2
+ 7 (gxg"m].
Equation (20b) is replaced by

3

S 0(6, + 6,,6),
Lj=1

3

z v(6; + 0;’,77);
Lj=1
with obvious notations. It follows that Q( 8,V,&,1) is (27/
3)-periodic in both £ and 7.

Once more, we evaluate the various integrals of Eq.
(36) in the saddle point approximation. A straightforward
application of the lemma of Appendix B shows that, for |£ |
and |7| less than 7/3, @ reaches three times its maximum,

namely when
6,=0,=60;=n(27/3),
8;=0;=05= —n(27/3),

[%(g) + 7 (gxg.&)

(38)

7 (gxg€) =
(39)

7 (gxg"m) =

(40)
0y=0;=05= —n(2n/3),
r=0,
with n =0, + 1. The maximum value of ® is
om =77 55— (5] (-5 (5))
max — <~ A\ 1 ——{=
B3 Lo 2 \«xm 2 \7
2 2
@23 @D
2 \7 2 \7

and its quadratic part around the maximum corresponding
ton =0 (say) is

so- s (a2 -2 ()3

+(1-3(5)) 2o (- (2)) 2o

(42)
Then, proceeding as in Sec. II, we obtain the following
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k§ fund (gk)xfund (g’k)]

x fd3p trinf1+ Reyng (8) ® Ryyna (8)exp( — B |pl + ipR + if)]}

37

|
asymptotic expression for the function &(W,V,£,1) [ (27/

3)-periodic in £ and 7], valid when |£ | and |9| <7/3:
a(W.V.gm)

=Gl (1 (5))
(=@ -G

X (I/W) ( Vw3) —7/2 exp[g(Q(é—,ﬂ) Vw3)l/4] ,

(43)
where
797 9 1 [£\?
oo -B2-261- (8]
&) 30 2§ 2 \7w
l 2
3of- 3]
277[ 2 \7w (44)

The density of states o( W,V,B,, B,) now vanishes except
when both integers B, and B, are multiples of 3 (implying
that B and g are integers), in which case it can be written as

o(W.V, B, B,)
/3 d_g /3 ﬂ

—a/3 21

-9 e~ EB+ BIG(W, Y £ ).
(45)

Inserting Eq. (43), we derive its asymptotic form, expressed
interms of b,=B,/V = baryonic charge density b + electric

—a3 21

charge density p, and b,=B,/V = 2b — p:
O'(W',V,blV,sz)
~ (E/W)Y(VW?)~ 5 %exp[y(VW3)1/4), (46)
where
_ 4 (79#2)1/4 1++§§(21+22)
=330 ) O+ tz0 +u2+z1P"

Ee 9 (Pﬁ)-tl/‘t

212,53
{1 + }3[21(2 +2z,) +22(2 +22)]}43/4
[143(z; +2)1*0(1 4+ 32)) (1 + 32,)1°2

(1—z) | z,(1—2z)\] "2
x[1 - (2 + 47)
[ B 1+ 3z, 1+ 3z,
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and where (z,,2,), function of |b,|**V /W and |b,|**V /W,
is the unique solution (with z,, >0) of the coupled equa-
tions

2001 4+2)" 0 (45 )
B+202+2)+202+2) 4w\ 3 )’

i=12. (48)
These formulas are valid provided that |b,], |b,| <b,,.
Again, the value of 5., has not been worked out, but is cer-

tainly less than 22 (W /V)3/*/\[37.

Similar calculations in the case of a nonbroken SU(6)
flavor symmetry yield the following results. The function
a(W,V,v) involving the chemical potential /v associated
with the baryonic number B is (#/3)-periodic in v, and for

a(W,Vv)

N ﬂ —3— ¢(V)133/8
W 47 7 [1=3(vw/m)?)*?*[2 -

3(v/m)?]*

X%}(VW%“‘”“ CXp[% W)V, (49)
where
Y(v) = '313172 91’2[1— (v/7)? ] (50)

The asymptotic behavior of the density of states o( W,V,B)
at fixed baryonic charge density b is [for |b|<b, <27/*

X (W /V)¥'4/3{37]

oW, VbV) = (F/W)(VW3) Sexp[S(VIW?3)1/4],

vl <7/6: | (51)
where
s=24 (791:2)1/4 1+ 5z,
S 3\30/) [1+%z502+2)]
Fo 1215 (7972)” [1+%52,(2 +2,)]%" 52)
64 \ 30 ) (14 42,)%(1 +32,) " T= 201 —25)/(1 + 325)]

and where z, is the (unique) positive solution of
(1 +2)*° _ (rl )
% +23(2+25) 2 W

By comparing Eqgs. (48) and (53), we see that in the
particular case b, = b, (which implies b, = 35 /2), we have
z, = z, = 25,50 that § = y. Thus, when the quark densities of
each type (“1” and “2”) are equal, the argument of the ex-
ponential in the density of states is insensitive to the fact that
the flavor symmetry is broken or not: it depends only on the
number of colors and flavors. However, the power of the
dimensionless variable (¥ ?) in the preexponential factors
decreases when the complete flavor symmetry is restored.
This is in accordance with the general rule pointed out at the
end of Sec. IL.

As a last comment, let us insist on the following point.
We do not pretend that the model of this section [partially
broken SU(6) flavor symmetry] is particularly realistic.
Rather, we have chosen it in order to show how it is possible
to accommodate different types of constraints on the config-
urations of the physical system. Obviously, the methods pre-
sented here can be applied to a lot of various situations.

(53)
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APPENDIX A: PROOF OF EQ. (10)
Let 7y (resp. ) be the Fock space describing the
physical states of an assembly of bosons (resp. fermions).
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I
Let &, a (compact) Lie group, be a symmetry group of this

physical system, and U(g), g€Y be the unitary representa-
tion of ¥ in #° &y Let A be an additive operator in 5% @
(for example, energy, number of particles, various kinds of
charges,..., or any linear combination of these operators),
whlch commutes with U (8), Vge¥. We want to evaluate
U (&) e

SmceA and U (g) commute, there exists in #° (2 2 (g-
dependent) basis that diagonalizes both operators. Let |a,0)
be the one-particle states of such a basis, where a labels the
eigenvalues of 4 (including a possible degeneracy besides the
one associated to & ), and o labels those R, (g) of U (g):

(a' ,a’|A |@,0) = 8406044, (A1)
(2,0 |U(8)|2,0) = 8,408, R, (8). (A2)

Any configuration of the system is defined by the set of
occupation numbers {n,,}. The additivity of A simply
means that

{10, YA {10, = Tno A,

Then, using the basis [{n,,}) to evaluate the trace, we
readily obtain

(A3)

TryU@e' = 5 TR @] recte
=13 [Ro.(@)e™]" (A4)
In the boson case, this becomes
1 (A5)

= H det —8M8 ——,

@z 1 — R, (g)e’ 1— R(g)e

where the (finite-dimensional ) matrix R(g), diagonal in the
basis |o), is nothing but the image of g in the (irreducible)
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x
l l ] >
- 5lp + r

FIG. 1. Solutions of Eq. (B3).

representation of ¥, under which transform the one-particle
states.
In the fermion case, one obtains, similarly,

Trp Ug)e? = [ det[1+ R(g)e™] . (A6)

Finally, expressions (A5) and (A6) can be rewritten as
Tr(g)f/(g)e'?:exp[$2tr In[1 $]R(g)e"“]] R (A7)

where the trace “tr” operates on the matrices of the one
particle representations of &. This is the announced result,
Eq. (10). Notice that these formulas no longer refer to states
|o) that diagonalize U(g).

APPENDIX B: SOLVING AN EXTREMUM PROBLEM

Lemma: Let the group ¥ be the direct product
SU(N,) X+ XSU(X,), and R(g) (ge¥) be its fundamen-
tal representation. Let M be the lowest common multiple of
N,,...,N,.Letpbea positive number, and v a real angle. Then
the maximum of |det[1 + pe"R(g) ]|, when g ranges over
4, is a periodic function of v, with period @ = 277/M, and it
is reached on those elements g of the center of &, defined by
(i) & = &, X X8, gccenter of SU(N,), i = 1,...,p, that is

2imn/ N,

tosay g, =e , n; integer, and

s T n, n, T
(i1) —A—{<V + 277(-}-\/,—l + ot 7V7><M'
Proof: (I) We first consider the case where
% = SU(N). Since the determinant of [1 + pe"R(g)] isa
class function, we can restrict ourselves to diagonal matrices
R(g). Let eia", a = 1,...,N, be the diagonal elements of R(g).

The 8°s are constrained by

N
S 6,=0 (mod2m).

a=1

We thus have to look for the maximum of the function

(BI)

N
det[ 1+ pe*R()]1[>= [ [1+ 2p cos(8, +v) +p°],
a=1
(B2)

when the @’s vary under the constraint (B1).

We first notice that changing 6, into 8, + 2#/N, for all
a’s, preserves Eq. (B1). This is equivalent to changing v into
v — 27/N in the right-hand side of Eq. (B2). Consequently
the maximum of |det[---]| is a function periodic in v, with
period @ = 27/N.
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FIG. 2. Plot of the function f(6).

Introducing a Lagrange parameter A for the constraint
(B1), we get the following extremum equations:

cos(6, +v) + (1/4)sin(6, +v) +3 (p + 1/p) =0
(a=1,.,N). (B3)

Let A be the straight line of equation x + y/A + {(p
+ 1/p) =0Ointhex, y plane (Fig. 1). It intersects the x axis
atthepointx = — (p + 1/p)/2< — 1. Italsointersects the
unit circle centered at the origin in (at most) two points
x + iy = €* and e™. We distinguish these two points by the
condition cos £>>cos 7.
Any solution of Egs. (B3) is such that some of the
(6, + v)’s are equal to £, and the remaining ones are equal
to 77. For example,

& a=1,.,P
o +v=] .
Y 7 a=P +1,.N (mod 27) (B4)
At this extremum, the constraint (B1) reads
P+ (N—Pyp=Nv+2mn (n integer). (BS)

Here £ and 7 are completely determined as functions of P
and n, by Egs. (B5) and (B6):
sin & _ sin 7
cosé +4(p+1/p)  cosn+4i(p+1/p)
For convenience we will use in the following the variable

4 = v + 2an/N in place of the variable n. Now, at the extre-
mum (B4), |det[--]|? takes the value

F(Pu)=(142pcos€ +p>)’(1 +2pcosy +p*)N 1~
(B7)
We are left with the problem of finding the maximum of
F(P,u) when P and u vary. Let us, for a moment, allow
these two variables to vary continuously. Then, differentiat-
ing Eqgs. (B5) and (B7) with respect to P, u, £, and 7, we
compute the partial derivatives of F(P, u):

14+2pcosé +p°
1+2pcosny +p°
sin &
cosé +4(p+1/p)°
(B8)

(B6)

—(—%—lnF(P,,u) —In

—(n—=8)

O WmFPu) = —N sin § .
du cosé +4(p+1/p)

Let us call f(8) the function In(1 + 2p cos 8 + p?).
Figure (2) exhibits first its variations when 6 ranges from

(B9)
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— grto , and second a couple (£,7). Note that according to
Eq. (B6),f'(£) =f'(7). Equation (B8) can now be rewrit-
ten as

2 1 PP, ) =) —fm) = E—mf (),
and elementary geometrical considerations show that its

right-hand side is positive:

(B10)

a3
—1In F(P, 0. (B11)
3P (Pu) >

Furthermore d In F /du has the opposite sign of &, or
equivalently the opposite sign of u

.u—é-lnF(P,.u)<0. (B12)
du

Next, we remark from Eq. (B5), the right-hand side of
which is equal to & y, that the variables P and u are linearly
related: When P varies from O to N, y varies from 9 to &. This
means that the set of points of coordinates Pand i, on which
is defined the function F(P ,u), is generated by a family of
segments, each segment corresponding to a possible value of
the couple &,7. Furthermore, on such segments:

2
iPlnF(P,y) —imlEpcess to 6 (B13)

¢n l42pcosn+p
The reader will convince himself that the information
conveyed by inequalities (B11), (B12), and (B13) is suffi-
cient to conclude that the maximum of |det[---]] is reached
when the following two conditions are met: (i) P = N, that is
to say all the (8, + v)’s are equal to £,

0, =--=68y=2mn/N (n integer); (B14)
(ii) x is minimum in modulus, that is to say
4 n_mw
———V A 2T —— . (B15)
NN

This ends the proof of the lemma when & = SU(N).

(II) We now consider the case where ¥ = SU(N,)
X+ XSU(N,). Once again we can restrict ourselves to ele-
ments g =g, X+ Xg, of ¥ such that R(g) =R,(g,) X~
XR, (g,) is diagonal. Let i (a = 1,...,N;) be the diagonal
elements of R;(g;), j = 1,...,p. The constraints on the @’s
read

N
Y 6,;=0 (mod 27m) (j=1,..p),

a=1
and we have to look for the maximum .# ( p,v) of the func-
tion

|det[1 + pe"R(g)]|?

- ﬁﬁ (142

a=1 a,=1
Xcos(eall + e +0‘1p0 +V) +P2],

when the 8’s vary under the constraints (B16).

We notice that these constraints are preserved when
changing 6, ’s into 8,,; + 27 n;/N, for all @ and s, where
the n; are any integers. This is equivalent to changing

n n
v—v — 21 ———1-+---+—p),
-~ (N, N

P

(B16)

(B18)
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(B17)

in the expression (B17) of the determinant. Let M be the
lowest common multiple of N,,..,N,. Then N, =M /m;
(j=L,....p), where m,,...,m, are integers, the highest com-
mon factor of which is 1:

(B19)

The transformation (B18) can thus be written as v—v
— Qa/M) (mn; + - +m,n,). Now, it is known that
when p given integers m,,...,m, ( p>2) have no common
factor other than 1, their linear combinations mn, + -
+ m,n, with arbitrary integer coefficients n,,...,n, can take
any given integer value n (see Ref. 10). Consequently, the
transformation (B18) can finally be written as v—v
— 27n/M, where n is any integer. We conclude from that
that the maximum .# ( p,v) of |det[---]|? is a periodic func-
tion of v, with period @ = 27/M.

From the constraints (B16), we can derive the follow-
ing relation:

Nl NP
z az=1 (6a,1 + - +9app)

a, =1

hef(m,,...,mp) = 1.

1

P

= 27N, - N,n/M, (B20)

where n,,...,n,, and also n, can take any integer values. De-
fining the multiple index {a} and the variables ,,, by

{a} ={a,,...a,}, (B21)
Ola) =0yt + -+ + b, (B22)

Eq. (B20) can be rewritten as
(B23)

g 6{‘,} =0 (mod 21TN| ves NP/M)’

and the right-hand side of (B17) becomes the product
H{a} [1 + 2P cos(o{a) +v) +p2]

We now introduce the following auxiliary maximum
problem: find the maximum .#"( p,v) of this product, when
the ;s are constrained by (B23).

Since the constraint (B23) is weaker than the con-
straints (B16):

M(pVIKA (pv). (B24)

As a matter of fact, this auxiliary problem is nothing but
the problem solved in part (I) of this proof, with N equal to
21 =N, - N,, but with the difference that the constraint
on the 6’s, which previously was written mod 27, is now
written mod 27 N, --- N,/M. Very little has to be modified in
the proof to conclude (i) that the maximum 4"( p,v) is
periodic in v, with period @ = 27/M, and (ii) that it is
reached when all 0, s are equal,

Oy + -+ Bapp =2mn/M, (B25)
with the integer n fixed by
—a/M<v +2mn/M<7/M. (B26)

An immediate consequence of Eqs. (B25) is that all
6,,’s for j fixed and a = 1,...,N; are equal. Moreover they
can be given a value 277n; /N, with n, integers, in such a way
as to satisfy the constraints (B16). It suffices to find integers
n;’s such that
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n

N . AR N M’
or equivalently n,m, + -+ n,m, = n, and we know that
this is always possible, due to condition (B19). This implies
that .# ( p,v) and ¥ ( p,v) are equal, and that the maxi-
mum # ( p,v) of |det[1 + pe”R(g)]|* is reached on those
elements of & defined by

(B27)

0,; =2mn;/N;, (B28)
where the integers n;’s satisfy the condition
m n n T
——<v 427 —‘+---+——‘1-)<—-. B29
M ( N, N,] M (B29)

P

This ends the proof of the lemma.

Extensions of the lemma: Since the elements of ¥,
where the maximum of |det[1 + pe”R(g) ]| is reached, do
not depend on p, the lemma is still valid if we replace
|det[--]| by Sfdu( p)é(|det]--]}), provided ¢ be a nonde-
creasing function, and du( p) be a positive measure on the
positive p axis.

Choose the function ¢ =
w ¢ _ yk—1
In|det[1 + pe"R(g)]| =Re kzl —(——-I—z——-p"e"“'x(g").
(B30)
From the elementary integral
1, e 1Y 1

valid for any ¢ when k > 0, we conclude that the lemma holds
for the function

1 -
=_1____Jd_P(1ni)" :
(=2 J p p

X1n|det[1 + pe"R(g)]|

7 ,(&V)

o k—1
= Re z (__.2___

(B32)
= ke

etkvX ( gk)

APPENDIX C: PROOF OF EQ. (25)

Let g be any element of the SU (N) group, with eigenval-
ues €%, k =1,...,N. The angles 6,,...,0, are restricted by
3¥_, 6, =0, mod 27. A class function f(g) on SU(N) de-
pends only on the 8°s, and its mean value over the group is
given by’

f du(g)f(g)
SU(N)

~w (S G252

X f(B15..,0x).
For the Gaussian function

FBrreiBy) —exp(—— s e:)

n=1

(C1)
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in the limit where C— o, the integral may be evaluated in
the saddle point approximation, around the maximum at
6, =« =6y = 0. We obtain

-LU(N) #(g)exp ngl
1 (N= f+ o de,)
C—o NI (il;I] —w 2T

N
x| 116 6% |exs( - £ 3 62).
j<k

n=1

(C2)

After the change of variables 8,—t, = \/C 6,, we trans-
form this (N — 1)-dimensional integral into a N-dimen-
tional one, by introducing the missing ¢, variable, through
the identity

+ + o
1-—[ dth dxexp[ix(ty+t,+ - +1ty)].

) (C3)
Straightforward manipulations lead to the result

f du(g) ( ) ¢ 7
glexp| —— ~
SUN) H p nzl C—o (2m)N-VANWN

(C4)

1,

where ] is the following integral, evaluated in Ref. 11:

N + o N
I= (H f dti)(n (t — tk)z)
i=1+ — <k

Xexp(—— Yt )= (27)”’2ﬁ .

n=1 i=1

This ends the proof of Eq. (25).

(C5)
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This is the first part of a series of papers devoted to direct and inverse scattering of transient waves
in lossy inhomogeneous media. The medium is assumed to be stratified, i.e., it varies only with
depth. The wave propagation is modeled in an electromagnetic case with spatially varying
permittivity and conductivity. The objective in this first paper is to analyze properties of the
scattering operators (impulse responses) for the medium and to introduce the reader to the
inverse problem, which is the subject of the second paper in this series. In particular, imbedding
equations for the propagation operators are derived and the corresponding equations for the
scattering operators are reviewed. The kernel representations of the propagation operators are
shown to have compact support in the time variable. This property implies that transmission and
reflection data can be extended from one round trip to arbitrary time intervals. The compact
support of the propagator kernels also restricts the admissible set of transmission kernels
consistent with the model employed in this paper. Special cases of scattering and propagation
kernels that can be expressed in closed form are presented.

I. INTRODUCTION

The propagation of waves in lossy media can be modeled
in a number of ways, depending on the features of the propa-
gation that are of interest. This series of papers will deal with
linear wave propagation in an inhomogeneous medium that
is characterized by dissipation and phase velocity profiles
that are independent of the frequency of the wave. A precise
model for such propagation is given in Sec. II of this paper.
This model involves one-dimensional electromagnetic wave
propagation in the time domain in a medium that is charac-
terized by spatially varying permittivity and conductivity
profiles.

This series of papers presents a time domain approach to
wave propagation that yields a unified theory for both direct
and inverse scattering. The basis for this approach is in the
splitting/invariant imbedding techniques that have been ex-
ploited in earlier work. Specifically, these techniques apply
to time domain reflection and transmission operators for a
given scattering medium.

For the convenience of the reader, the pertinent features
of previous work in this area will be explicitly displayed
when necessary. The present paper, Part 1, deals with the
direct scattering problem; i.e., given the dissipation and
phase velocity profiles, determine the scattering operators
(or impulse responses) for the medium. These are operators
that can be used to map any transient normally incident field
over to the resulting scattered fields. Various properties of
these operators are developed, and it is shown how they can
be utilized to “extend” scattering data.

A subsequent paper,’ Part II, deals with the full inverse
problem; i.e., given the scattering operators for a medium,
determine both the dissipation and phase velocity profiles
for the medium. Since a number of results derived in Part I
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are not used in Part II, the reader who is primarily interested
in the inverse problem can proceed to Part II after reading
this introduction and Sec. II of the present paper, in which
notation is established and a precise statement of the prob-
lem is given. Results from Part I that are used in the inverse
problem are summarized at the beginning of Part II. Some
numerical examples showing scattering operators (as well as
inversion procedures) will be given in Part IL

Section III of the present paper reviews the integrodif-
ferential equations satisfied by the kernels of the scattering
operators and relates these kernels to the propagator kernels
for the medium. A reciprocity result is also derived. Integro-
differential equations for the propagator kernels are derived
in Sec. IV. In Sec. V a result that can be used to characterize
transmission data is developed. This result is also used to
extend reflection and transmission data from a single round
trip time trace to a time trace of arbitrary length. Section VI
is a summary of the work in Part I. Appendix A supplies
technical details used in Sec. V. Closed form expressions for
scattering and propagator kernels in special cases are given
in Appendix B. Finally, operator equations for the propaga-
tors are shown in Appendix C.

To put the present results in their proper context, some
details regarding previous work are now given. Corones and
Krueger? and Davison® developed a system of integrodiffer-
ential equations for the reflection and transmission opera-
tors. Those studies displayed the time domain behavior of
these operators. However, it was also shown that those re-
sults could be interpreted in the frequency domain. In that
case, a Riccati differential equation for the reflection coeffi-
cient was obtained.

In later work, Corones et al. used the reflection operator
equation as the basis for an inversion algorithm in nondissi-
pative*~’ as well as dissipative media.®~'° (In the dissipative
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case, g priori information about phase velocity or dissipation
is required. ) Bruckstein ez al.'! have given a partial review of
Riccati equation techniques in the frequency domain and
shown their relation to certain integral equation approaches
to inversion.

There are several well-documented solutions to the full
inverse problem (i.e., simultaneous reconstruction of both
dissipation and phase velocity profiles). Such solutions,
however, use completely different methods than the tech-
niques presented here. Weston'>™'* was the first to use the
full scattering matrix in the time domain to solve the one-
dimensional dissipative inverse problem. He applied a Rie-
mann function approach to develop a system a Gel’fand-
Levitan-type equations whose solution yielded the desired
profiles. The data for this problem consisted of the time do-
main reflection and transmission operators. These results
were generalized by Krueger'>™"" to include more realistic
material profiles. This had the effect of also reducing the
data requirements in the problem, although transmission
data were still required. More will be said about this in Part
I1. Jaulent'®'® pursued a frequency domain approach to dis-
sipative inverse problems in a variety of settings. The prob-
lems considered involved a complex potential with a linear
dependence on frequency, and the required data consisted of
reflection and transmission coefficients.

A model of dissipative wave propagation, which is more
physically motivated than that used in this paper or in any of
the above-referenced papers, is possible. Such a model is ob-
tained by appealing to the underlying constitutive relation in
the problem. In the frequency domain, this implies a certain
dispersion relation, whereas in the time domain, this implies
the existence of a memory function for the medium, The
methods used in the present series of papers also have been
applied to direct and inverse scattering problems in electro-
magnetic®® and viscoelastic>’ media, which are character-
ized by such a memory function.

Il. STATEMENT OF THE PROBLEM

In this section some notation is introduced and a precise
statement of the inverse problem is given. The geometry of
the problem is shown in Fig. 1. An inhomogeneous slab oc-
cupies the region 0<z<L. This medium is assumed to be
stratified so that the permittivity and conductivity are func-
tions of depth z only. A homogeneous, lossless medium is
situated on either side of this slab.

Homogeneous / € (2) /

O (z)

SN
A

z=0 Z=L1

Homogeneous

lossless medium lossless medium

FIG. 1. The geometry of the inhomogeneous medium.
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An electromagnetic plane wave is launched in the region
exterior to the slab. This impinges normally on the medium,
giving rise to an electric field E(z,t) within the slab, with E
satisfying

E, (z,t) — ¢ 22)E,(z,t) — b(2)E, (z,6) =0, (2.1)
where
c"2(2) = €D b(2) = 0(2) g (2.2)

and p, is the permeability in vacuum, o(z) is the conductiv-
ity, and €(z) is the permittivity. The analysis becomes
simpler if the phase velocity ¢(z) is continuously differentia-
ble within the slab. This will be assumed throughout this
paper. It is further assumed that the phase velocity is contin-
uous (although not necessarily smooth) at the boundary of
the slab. Thus, in the regions exterior to the slab the phase
velocity is given by

c(z) =c(0"), z<0,

c(z)=c(L ™), zxL
(where the + superscript denotes the limit from the right
and the limit from the left, respectively). These assumptions
insure that E and E, are everywhere continuous. This pre-
cludes the existence of impulsive echoes in the scattered
fields.

Now if the incident plane wave is launched in the region
z <0, then the general solution of Eq. (2.1) in the region to
the left of the slab is

E(zt) =E', (t—2/c(0))+ E", (t+2/c(0)), z<O.
(2.4)

Here, E‘, and E", denote the incident and reflected fields,
respectively. The subscript “ + ” denotes the fact that the
incident field is propagating in the + z direction. In addi-
tion, a transmitted field is produced in the region to the right
of the slab. This has the form

(2.3)

Ezny=E" (t—1—(z—-L)Y/c(L)), z>L, (2.5)
where
L
I=J c Y (z)dz. (2.6)
0

The incident and scattered fields are related by the scattering
operators (i.e., reflection and transmission operators) for
the slab. These are integral operators represented by

E" (1) =f§ t(t—t")E', (t"dr',
° (2.7)
E', ()=t*E', (1) +f"T+(t— tYE', (¢')dt',
where °

L
Pt — [Z((g)) v exp[ — —;-J:) b(z)c(z)dz]. (2.8)

In Eq. (2.7) the functions R *and T * are the reflection and
transmission kernels, respectively, for incidence from the
left. Notice that the lower limit of integration in (2.7) has
been chosen to be 0, which is equivalent to assuming that the
incident wave front first impinges on the slab at £ = 0. Notice
also that the time variable ¢ in Eq. (2.7) does not represent
physical time, but rather a characteristic variable for Eq.

G. Kristensson and R. J. Krueger 1668



(2.1) outside the slab [cf. also Eqs. (2.4) and (2.5)].

The existence of the scattering operators in Eq. (2.7)
can be verified in a number of ways, one of which is shown in
Ref. 15. In particular, these operators are independent of the
incident field used in the scattering experiment and depend
only on the properties of the slab. Furthermore, velocity mis-
match effects have been taken out of the problem by the
assumption that ¢ is continuous (although not necessarily
smooth) at z = 0 and z = L. Hence, in comparing the form
of the operators given in Eq. (2.7) with those in Ref. 15, the
constants ¢, and ¢, in Ref. 15 must be set equal to 1.

A second pair of reflection and transmission operators
describe scattering experiments for incident fields impinging
on the medium from the right. In this case the general solu-
tion of Eq. (2.1) in the regionz> L is

Eizt)=E'_(t+(z—L)/e(L))
+E"_(t—(z—L)/e(L)), z>L, (2.9)

where E‘_ and E”_ are the incident and reflected fields,
respectively. To the left of the slab the transmitted field is
given by

E(zt) =E' ((t—1+2/¢(0)), z<O. (2.10)

These fields are again related by scattering operators for the
slab, which are represented by

E"— () =fft ~(t—t)E'_ (t")dt',
b (2.11)
E' ()=t"E'_ () +f T-(t—t)E" (t"dt',
0

where

- 172

-_ _[e@) 1 r ]

t [ <(0) exp[ >k b(z)e(z)dz|. (2.12)
Again in Eq. (2.11) it is assumed that ¢ = O corresponds to
the time the wave front first impinges on the slab at z = L.
Notice that if E, (¢) = 8(¢) (where & is the Dirac delta),
then from Egs. (2.7) and (2.11), it follows that
E’, (t)=R(t) and E*, (t) =t *8(¢) + T(¢). Hence, the
scattering kernels R *, T * are the impulse responses for the
medium.

The inverse problem considered in this series of papers is
that of determining both €(z) and o(z) (as well as L) for the
slab through the use of scattering experiments performed on
the slab. More precisely, the scattering data used in the re-
construction of € and o consist of finite time traces of both
reflection kernels, R £(¢), and one of the transmission ker-
nels, say, T * (¢) for O < t <21. Here, 2/ [with ! defined by Eq.
(2.6) ] represents the time it takes a signal to travel one com-
plete round trip through the medium.

The data used in this formulation of the problem are a
deconvolution of Eq. (2.7) and (2.11). The effect of imper-
fect deconvolution can be studied (at least numerically) by
means of the inversion algorithms presented in Part II.

At this point a transformation of dependent and inde-
pendent variables in Eq. (2.1) is made. This transformation
is not necessary for the implementation of the inversion al-
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gorithms given in Part II. However, it does result in a
simpler-looking analysis (compare with Ref. 10) and nu-
merical scheme. Begin with the change of coordinates,

Z — 1y ]
x=x(z)=Jc_M,
o l
s=t/l,
u(x,s) =E(z),

(2.13)

where x is normalized travel time and s is normalized time.
In these new coordinates the slab occupies the region 0<x<1
and a round trip time trace is described by 0 <5 < 2. Equa-
tion (2.1) becomes

U, —u, +Ax)u, + B(x)u, =0, (2.14)
where
A(x) = —-——d—ln clz(x)), (2.15)
dx
B(x) = —Ib(z(x))c*(z(x)), (2.16)

and In denotes the natural logarithm function. The coeffi-
cient functions A and B vanish outside of the interval [0,1]
and are continuous on the interval (0,1), with possible finite
discontinuities at x = 0 and x = 1. Typical plots of 4 and B
are shown in Fig. 2.

It follows from the compact support of 4 and B that for
x <0 and x > 1, solutions of (2.14) reduce to right and left
moving waves. These are readily related to the physical
fields. In particular, scattering operators again exist for Eq.

1 Normalized
travel time
8
1
Normaglized
travel time

FIG. 2. Profile functions A and B.
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(2.14). For a right moving incident wave ', (s —x),
launched in the region x <0, it can be shown that the reflect-
ed and transmitted fields are given by

u, (s) =JR *(0,1,s — s )u', (s')ds', (2.17)
o

u', (5) =t+ (0,1, (s) +‘[T“L(O,l,s—s’)u"Jr (s')ds',
0
(2.18)

while a left moving incident wave, ¥’ (s +x — 1), in the
region x > 1 produces reflected and transmitted fields

u_ (s) = J“R —(0,1,5s — s )u'_ (s')ds', (2.19)
0

U (s) =t (0,1 (s) +f T(0,1,s —s"Hu'_ (s)ds,
0
(2.20)

where

1
££(0,1) = exp[ ¥ %f {4(x) ¢B(x)}dx]. (2.21)
0

The reflection and transmission kernels in (2.17)-
(2.20) arerelated to the physical kernelsin (2.7) and (2.11)
via

R £(0,1,5) = IR * (Is),
(2.22)
T £(0,1,5) = IT * (Is).

Notice that these transformed kernels reference the end
points of the scattering medium. This is because in later sec-
tions of this paper, scattering kernels for subsections of the
original medium will be considered. Observe that the inde-
pendent variable in (2.18) and (2.20) can be thought of as a
characteristic variable.

Finally, it is necessary to define a second set of operators
for the scattering problems relevant to (2.14). These are
propagation operators” for the medium and are used to ex-
press the incident and reflected fields in terms of the trans-
mitted field. They are given by (see Ref. 15)

u', (5)=[t£(0,1)] W', (5)

+f W £(0,1,s —s")u', (s')ds, (2.23)

0

u, (s)= [t (0,1)]“[0 V£(0,1,s —s)u', (s)ds'.
(2.24)

Notice that the “W > operator is just the inverse of the corre-
sponding “T operator. Consequently, the kernels
W £(0,1,5) in Eq. (2.23) are just the resolvent kernels for
the functions T * (0,1,s). The explicit relation between these
kernels is

[££(0,1)]7'T £(0,1,5) + 1 *(0,1) W *(0,1,5)

+fTi(O,l,s—s’)Wi(O,l,s')ds’=0. (2.25)
o

The end points of the (transformed) slab are explicitly
displayed in the arguments of R * (0,1,5) and T £ (0,1,s),
and as well as in ¥V *(0,1,5s) and W *(0,1,s). In the next
section both of the end points of the slab are allowed to vary
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(see Fig. 3) and in this more general case R * (x, y,s) and
T % (x, y,s) denote the reflection and transmission kernels,
respectively, for the subregion of the slab with end points at x
and y, with 0<x<y<l. A similar notation holds for
V *(x,ys) and W £ (x, y,s). It should be stressed that it is
only the kernels corresponding to x = 0 and y = 1 that are
physically obtainable.

lll. EQUATIONS FOR THE SCATTERING KERNELS

In the preceding section the physical reflection and
transmission kernels were introduced. These are the data
that are obtained from a scattering experiment. Throughout
the remainder of this paper, the transformed problem given
in (2.14) will be studied, and in particular the kernels on the
left-hand side of (2.22) will be referred to as the physical
scattering kernels (since they are easily obtained from the
physical data).

The dependence of the scattering kernels on the param-
eters x and y (which are the end points of the subregion
[x, y]) will be reviewed in this section. It is intuitively clear
that this dependence is related to the material properties of
the slab. Relations to this effect are developed in detail in
Ref. 2. For the convenience of the reader and for complete-
ness the main results of that reference are given here:

b A
4
/1
/
S
|
/
/ l
i
// X y 1 Normalized
P4 travel time
18

x y 1
-~ : Normalized
; travel time

|

|

/

//
-

FIG. 3. Profile functions 4 and B for the subregion [x, y]. The dashed lines
indicate the omitted portions of the physical region.
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R (x,5)
=2R * (x,y,s) — B(x)R *(x,,5)

—1[4(x) + B(x)]

xj R (x,y5)R T (x,ys—5)ds', s>0,

0

R+(y,y,S)=0, S>0,
R*(x,y0%) = —4[4(x) —B(x)], x<y;

3.1

Tr(x,y5)
=1[4(x) —B(x)]T *(x, y.5)

- %[A(x) +B(x)]{t *(x, )R T (x,y.8)
+ f TH(x,y5)R " (x,p,5— S’)dS’], 5>0,

0
(3.2)

TH(p,y5)=0, s>0;

T;(x,y5)
= —i[A(x) + B(x)]

X[T‘(x,y,S) +1t7 (%, PIR T (x, y,s)
+ J. T_(x,y,S')R +(x’yas _s,)ds'}, s>0;
(4]

(3.3)

T (y,y5)=0, 5>0;

R (x,ys5)
=4 + BEE* (6 DT (5,5~ 209 =)
+t (X, )T T (x, p8 — 2(y — X))

s — 2( y — x)
+f T*(x,p5)

0

XT (x,ys —2(y —x) —s’)ds'},

s>2(y—x), (3.4)
R (y,y5) =0, s>0
R, (x,p5)
= —2R 7 (x,3,8) + B(y)R ~(x, )
—1[4(y) — B(y)]
XJR (%, s )R " (x,y,s —5')ds, s>0,
0
R " (xx,5)=0, 5>0, (3.5

R7(x,y0") =4[4(y) + B(y)], x<y;
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T (x,5)
= —4[4(y) —B(y)]

X [T+(x,y,s) +t (x, )R ~(x, )

+ J TH(x, 05 )R ~(x,p,8 —s’)ds’}, 5>0, (3.6)
(4]
T (xxs)=0, s>0;

T (x,ps5)
=1[A(y) + B(p)IT ~(x,ps)

- %[A( y) —B(y)] [t (%, )R ~(x,3.5)

+ f T (xps)R™(x,ps —s’)ds’], s>0, (3.7)
0
T (xxs)=0, 5>0;

R (x, 3.5)
= —1[4(y) —B(y)][t"(x,y)T‘“(x,y»S

—2(y—x))+t (x, )T ~(x,y,s — 2(y — X))
s — 2(y — x)

+ T (x,ps")

0

XTH(x, 3,5 —2(y—x) —s’)ds’], §>2(y—x),

(3.8)
R (xxs5)=0, s>0
where
y
tE(x,y)= exp[ ZF-%I [{A(x") IFB(x’)]dx’}. (3.9)

Equations (3.1)—(3.8) are the imbedding equations for
the slab, obtained from continuously imbedding scattering
kernels for subintervals of the slab into a family of scattering
kernels. In particular, these equations display the change in
the scattering kernels due to variations in one of the end
points of the imbedded slab. As seen from above, these equa-
tions are in general nonlinear and of integrodifferential type.
Note that two of the equations, Eqs. (3.1) and (3.5), are
both equations for a single unknown kernel. The other six
equations couple different kernels together. With each of the
equations above there is also a boundary condition for the
case when x = y. This corresponds to a slab of zero thick-
ness. In Egs. (3.1) and (3.5), there are also two auxiliary
conditions relating the early time behavior of the reflection
kernels R * (x, y,s) to the properties of the slab (see also Fig.
4). Equations (3.1)-(3.8) are written in a slightly different
form than in Ref. 2 due to the particular representation of
the scattering operators given in Eq. (2.17)-(2.20).
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rY(0,1,s)
(Physical dota)

{0,1,2}

R*(x,1,s)

/ R+(oo¥ts) is
independent of y

x
(1,1,0)

R*(x,4,0%) = - F(A(X)-B(x))

(1,1,0) do

RT(0,4,s}
(Physicol data)

(0,1,2)

R™(x,1,s)

is independent R7T(0,y,s)

e

of x

A
LI

4 RT(0,y,0%) = 4 (Aly)+Biy))

FIG. 4. A portion of the domain R * (x, y,s). The entire domain is 0<x<y< 1, 53»0. The region inside the tetrahedron is the domain of R * (x, y,s) for s limited

to one round trip in the subregion [x, y].

The reflection kernels R * (x, y,s) are discontinuous
across the plane s = 2( y — x). These discontinuities are as-
sociated with the echo of the wave front from the rear inter-
face. Again referring to Ref. 2, the jumps in the kernels along
that plane are

[R*(x,p515232-00
y
=Ll —B(y)]exp[f B(x')dx'],
[R=(x,p9) 3222287

= — -}[A (x) + B(x) ]exp[JyB(x')dx’].

(3.10)

In Ref. 2 it is also shown that the reflection kernels
R £(x, y,s) satisfy (see also Fig. 4)

R*(x,95) =R *(xx +5/2%s), s<2(y—x),
(3.11)
R~ (x,95) =R (y—s/27,p5), s<2(y—x).

These relations state that the reflected field is independent of
the position of the rear interface of the slab for times less than
one round trip through the subregion [x, y]. The properties
of the reflection kernels R * (x, y,s) given by Egs. (3.10)
and (3.11) will be used in the inversion algorithm presented
in Part II of this series of papers.

In the transmission kernel equations given above, there
isadistinctionbetweenthe T+ and T ~ kernels. Now assume
that there is a relation between the kernels T * (x, y,5) of the
following form:

TH(x,08) = f, )T (x,p.5), (3.12)

where f (x, y) is an unknown function to be determined. A
relation of this kind is suggested by the fact that a reciprocity
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result should exist for the transmission operators. Equations
(3.2), (3.3), (3.6), (3.7), and (3.12) imply that f(x,y)
must satisfy
Sx(x,p) =A(x) f(x,9),
fyx,y) = —A(y) f(x,p),
fxp) =t (x, )/t~ (x,p).

(3.13)

These three equations are consistent and it is therefore con-
venient to introduce a single transmission kernel T'(x, y,s)
defined by
T(x,p8) =T (x,98)/t (%, ) =T~ (x,5,8)/t " (x, ).
(3.14)
In what follows, this new definition of the transmission
kernel will be the one that is used and from now on there are
only three different kinds of scattering kernels, i.e.,
R % (x,y,5) and T(x, y,s). It is easy to see that with this new
definition of the transmission kernel the Egs. (3.2), (3.3),
(3.6), and (3.7) can be replaced by two simpler ones,

T, (x,p8)= — %[A (x) +B(x)] {R *(x, p,8)

+ f T(x,p5)R " (x, 5 — s’)dS’],
0

5>0, (3.15)
1
T,(x,ps8) = — —2-[A(y) — B( .v)]{R T (x, 3,5)
+ J T(x, y,5')R ~(x, p,5 — s’)dS’},
0
s>0. (3.16)
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The resolvent equation (2.25) for W * generalizes to
the subregion [x, y] in the obvious way. Now since the T *
are simply related to a single kernel T, it follows that W *
can be related to a single kernel W. Specifically,

Wx,ps) =t (x, )W (x,95) =t~ (x, ) W (x, p,$5).

(3.17)
The resolvent equation for W(x, y,5) now reads
T(x, y,5) + W(x, ,s)
+ fT(x, P — YW (x, ps')ds =0, (3.18)
0

The equations for the ¥ * (x, y,s) kernels are
R *(x,y,5) =V *(x,y5)

+ J“T(x, ys—s)YV=(x,p5)ds,
0
(3.19)

which follows (in the “ + ” case) from inserting Eqgs. (2.17)
and (2.18) into Eq. (2.24) and using (3.14). Finally, Eq.
(3.19) can be solved for ¥ * by using the fact that W is the
resolvent kernel for T. This yields

VE(x,ps) =R *(x,s)

+ J R t(x,ys —5)W(x,ps')ds.
(1]
(3.20)

Exact representations of the kernelsR *,7, W,and V *
can be obtained in the special case when 4 (x) and B(x) are
constants. This is done by using the Laplace transform in the
variable s. Details are provided in Appendix B.

{V. THE W AND V* EQUATIONS

In this section, the dynamics of the kernels Wand V £
are derived. The definition of the resolvent W(x, y,s) of the
transmission kernel T'(x, y,s) is given by Eq. (3.18). Differ-
entiation of this equation with respect to the left end point x
gives
T, (x,35) + W, (x,,5)

+ f W, (x,y,s)T(x, p,s —s')ds'
0

+ J“ W(x, 8T, (x,y,s —§')ds' = 0. 4.1)
0

Now use the imbedding equation for the transmission kernel
T given by Eq. (3.15) and the definition of the resolvent in
Eq. (3.18) to get

W, (x,y5) —1[A(x) + B(x)]R *(x, y,5)

+ f W, (x, 5 )T(x, y,s —s')ds' =0, (4.2)
0
which can be simplified to
W, (x,y,s)
= %[A(x) + B(x)] {R *(x,3,5)
+f W(x,ys )R * (x,p,s — s’)dS’], s>0. (4.3)
(4]
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This equation gives the variation of the resolvent W(x, y,5)
as the left-hand side of the slab is varying. Note that this
equation is very similar to the equation for the variation in
the transmission kernel T'(x, y,s), given by (3.15).

The equation for a variation of the right-hand end point
is similar to the derivation above and the result is

W, (x, y,s)

=%[A(y) —B(y)][R (%, 3,5)

+f W(x, y,s')R ~ (x, y,s —s’)ds'}, s>0. (44)
0
A direct comparison between Egs. (4.3), (4.4), and (3.20)
shows that
W, (x,y5) =3[4(x) + B(x)]V * (x, y:s), (4.5)
W,(x,y.s) =4[A(y) —B(»)1V ™ (x, p5). (4.6)

The two pairs of equations for ¥ £ (x, y,5) now can be
derived quite easily. Differentiate V" * (x, y,s) in Eq. (3.20)
once with respect to x and once with respect to s and use Egs.
(3.1) and (4.5) to obtain

V.5 (x,35) =2V (x,p5) —B(x)V*(x, )
+4[A4(x) — B(x)1W(x, p,s5), s>0
V(3,55 =0, 5>0, (4.7)
V¥ (x,p07) = —[4(x) — B(x)], x<y.
Similarly, by differentiating ¥ ~ (x, y,s) in Eq. (3.20) with
respect to y and s the following equation is obtained by the
use of Egs. (3.5) and (4.6):
Vy (x5 = =2V (x,35) + B(y)V ™ (x,5)
+3[4(y) + B(»)1W(x,ps5), s>0,
V=(xx,s5) =0, s>0, (4.8)
V=(x,3,0%) =4[A(y) + B(y)], x<J.
Notice that the two Eqs. (4.7) and (4.8) do not contain any
convolution integral, but couple ¥V * with W.
The two final equations for the kernel V * (x, y,s) are
derived by a differentiation with respect to the other end
point in Eq. (3.20). The dynamics of ¥ ;' and ¥ in the

interval 0 < s <2( y — x) are now easily obtained by the use
of Egs. (3.11), (4.5), and (4.6). This results in

V5 (x,ps) =4[4(y) —B(y)]
XLSR (x5, yS YV (x, p,5 —5')ds'

=4[4(y) —B(y)]
XJSR (X, p8WVV T (x, 5 —5')ds,

0

O0<s<2(y—x), (4.9)

V(x5 =4[4(x) + B(x)]

XIR *(x, 3,8V " (x, p5 —5')ds'

0
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=1[4(x) + B(x)] fR sV (s — 8')d
(0]

XJ;R—(X,y,S')V+(x,y,S—S')dS’, :fR*(x’y,s')V+(x,y,s_sr)ds:, s>0, (4.11)

0
O<s<2(y—x), (4.10)  Which is easily obtained from Eq. (3.20).
The equations (4.9) and (4.10) are not valid for
5>2(y — x). In the derivation of the corresponding equa-
where the last equality in each of these equations comes from  tions valid for s>2( y — x), the following integral is en-

the identity | countered:

f R} (x,y5)YW(x,y,s —s")ds

2(y—x)

= —4[A(y) =Bt x, 0t~ (x, ){W(x, .8 — 2(y — x))

s —2(y — x)
+ 2f T(x,ysYWix,y,s —2(y — x) —s'¥ds’
0

s —2(py — X) s’
+J [J T(x,ys")T(x,ys' ——s”)ds”]W(x,y,s— 2(y—x) —s’)ds’], §>2(y—x). (4.12)
(] Q

This equation can be obtained by use of Egs. (3.8), (3.10), and (3.14).
It is now straightforward to combine Egs. (3.20) and (4.12) and repeatedly use the resolvent equation (3.18) to get

V,hx,ps8) = —4[4(y) —B(y)][t"(x,y)t T T (X, ps —2(y —x))

- J.R T (x, p8)YV 7 (x, pos — s')ds’], $>2(y—x). (4.13)
(1]
The equation for V  is derived similarly. The result is

V(x5 = —}[4(x) +B(x)]|t Tt T (x5, Tx, s —2(y — X))

—fR‘(x,y,s’)V*(x,y,s-—s’)ds’], §>2(y—x). (4.14)
0

Equations (4.13) and (4.14) can be simplified considerably with use of results presented in the next section. The conse-
quences of this simplification will be discussed at the end of Sec. V. An alternative derivation of the results in this section is ob-
tained by considering the dynamics of the propagator matrix for Eq. (2.14). This is carried out in Appendix C.

V. THE EXTENSION OF DATA

The W(x, y,5) and the V' * (x, y,5) kernels all share the important feature that they have compact support. More precise-
ly, for times larger than one round trip in the subregion [x, y], i.e., s> 2( y — x), these kernels are identically zero,

Wx,ps) =0, s>2(y—x), (5.1)

Vi(x,ps5)=0, s>2(y—x). (5.2)
These relations are derived in Appendix A.

Now suppose scattering data are known for one round trip through the subregion occupying [x, y]. Then Egs. (5.1) and
(5.2) can be used to extend that data beyond one round trip. To be more explicit, consider the end points x and y to be fixed for
the moment, and assume that T'(x, y,s) is known for times 0 <s < 2( y — x). Equation (3.18), which is a Volterra equation of
the second kind for the kernel W(x, y,5), then can be solved for W(x, y,s), 0 <5 <2( y — x). The kernel W(x, y,s) is thus
known for all s> 0 due to Eq. (5.1).

Now assume that s> 2( y — x) and rewrite the resolvent Eq. (3.18), using Eq. (5.1), in the following form:

'S

T(x,p,5) + Wi(x, y,s — s)T(x, y,s")ds'
2(y — x)
' 2(y — x)
- Wix,p,s —s)T(x,p,s))ds', 2(y—x)<s<4(y—x),
=G(x,ps5) = -[—Z(y—x) ¥ ¥ y Y (5.3)

0, s>4(y—x).
Notice that the function G(x, y,s) is known as a function of s for fixed values of x and y with the assumptions made above.
Equation (5.3) is a Volterra equation of second kind for T'(x, y,s) for s>2( y — x) and this equation can be solved for the
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unknown T'(x, y,5), s> 2( y — x). Equation (5.3) thus provides a tool for extending the data T'(x, y,5), 0 <s<2(y — x), to
the time interval s >2( y — x).

The extension of the reflection data now follows quite similarly, with the exception that both reflection and transmission
data have to be known for one round trip. More precisely, assume that R *(x, y,s) and T(x,y,s) are known for
0<s5<2(y— x). Then from Eq. (3.19) and Eq. (5.2) above, R *(x, y,5), s>2( y — x), is expressed as

2(y —x)

R = (x,y,5) =I T(x,ps—s)YVt(x,ps)ds, s>2(y—x). (5.4)
0
However, V  (x, y,5), 0 <s <2(y — x), is related to R * (x, y,s) by Eq. (3.20),
VE(x,ps5) =R *(x,s) +f W(x,ys —5)R = (x,ys5)ds’, 0<s<2(y—x). (5.5)
0

Combining these last two equations gives
2(y —x) s’
R t(x,y5) = f T(x,y,s—5s") [R E(x, ps8) + f W(x,y,s —s")R *(x, p,s" )dS"]dS', s>2(y—x). (5.6)
0 0

Notice that in this last equation, reflection data R * (x, y,s) are used only for times less than one round trip, i.e.,
0 <s<2(y —x), while transmission data, T'(x, y,s), are used for all s> 0. However, for times beyond one round trip the
transmission data can be extended with the technique discussed above in Eq. (5.3). These ideas will be exploited in a special

context in Part I1.

An alternate approach to the extension of the reflection data is to rewrite Eq. (3.20) fors>2( y — x) and use Eq. (5.2) to

obtain
W(x,y,s — s )R *(x, p,s')ds'

2(y—x)

J<2(y—X)
= s—2(y—x)

R *(x,p5) +

W(x,y,s — )R £ (x,y,s)ds,

Uy —x)<s<4(y—x),

0, s>4(y—x).
Thus far, the compact support of the kernels ¥ * has not been used in the imbedding equations derived in Sec. IV. Now
using the fact that ¥ * vanish identically for s> 2( y — x) reduces Eq. (4.13) and (4.14) to the following new representation

of the transmission kernel 7 for s> 2( y — x):

tr(x, )t (x5, )T (x, 3,5 —2(y — X))

2(y —x)
=f V*(x,y,S')R‘(x,yJ—S’)dS'=f

0 0

2(y —x)

VI. SUMMARY AND CONCLUSIONS

In this paper some mathematical tools for transient
wave propagation in lossy media have been introduced. This
work primarily focuses on the direct scattering problem and
the properties of the scattering operators. However, many of
the equations developed in the present paper are of impor-
tance for the inverse algorithm presented in Part IT (See Ref.
1).

Reciprocity is shown to imply that the two transmission
kernels T * are proportional to each other, see Eq. (3.14).
This property simplifies the analysis considerably and also
reduces the number of independent imbedding equations for
the scattering kernels.

The propagator kernels for the medium are also intro-
duced and some of their properties are exploited. In Sec. IV
the new imbedding equations for these kernels are derived in
Egs. (4.3), (4.4), and (4.7)-(4.10).

One of the main results in this paper, the compact sup-
port of the propagator kernels, has several consequences. In
Sec. V this property is shown to provide a way to extend
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V=(x,35)R *(x,y5 —5)ds,

§>2(y —x). 5.7

{

transmission data from one round trip to arbitrary time, see
Eq. (5.3). This extension is also possible for the reflection
data provided transmission data are available, see Eq. (5.6).

The compact support of W provides an important limi-
tation of the functional behavior of the transmission kernel
T. To be an admissible transmission kernel T for the model
considered in this paper, its resolvent W also must have com-
pact support. This observation provides an important char-
acterization of the transmission kernel 7. Furthermore, only
data for times less than one round trip are needed for this
characterization, due to the extension of data discussed
above. This implies that all information available in the
transmission kernel is contained in the time interval up to
one round trip and that if it is admissible or not is based upon
the functional behavior in this finite interval. Unfortunately,
the compact support of ¥ * doe not imply any simple char-
acterizations for R *. However, from the new imbedding
equations for V' * and the compact support of ¥V * a new
representation of the transmission kernel T is obtained, see
Eq. (5.7), which relates T to ¥ * and R *.
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APPENDIX A: COMPACT SUPPORT OF WAND V+

In this section it is shown that the kernels Wand V *
have compact support. This fact was introduced in Sec. V
[Egs. (5.1) and (5.2)]. The arguments given below suffice
to show that the kernels W(x, y,s) and V * (x, y,5) vanish
for s> 2(y — x). The compact support then follows from
causality, which implies that these kernels also vanish for
5s<0.

In the model problem given in Eq. (2.1), the velocity
¢(2z) is assumed to be continuous at the end points of the slab,
z=0and z = L. For the sake of proving a stronger result,
which should be useful in later work, this assumption will be
relaxed. Thus, ¢(z) can have finite jump discontinuities at
z=0and z = L. This generalization alters the transformed
problem given by Eq. (2.14) in that #, is no longer contin-
uous at x = 0 and x = 1. Instead, u, satisfies the relations

cott, (07,8) = u, (0%,9),

(A1)
e, (17,8) =u, (17,9),
where
co=c(0")/c(07),
(A2)

c;=c¢(L™)/c(L™).

It is now shown that for this more general problem,
W(0,1,s) vanishes for s>2. (The arguments given below
clearly generalize to any subregion [x, y] of the slab.) In
order to produce the desired result, an explicit formula for W
will be derived.

Being by expressing the solution # of Eq. (2.14) in terms
of transmission data #',_ (s) via

u(x,s) =5[t*(x,1)]“{(cl + Du', (s—x)

1
— (=D, (s+x— 2)exp[f B(s’)ds’]

x

2 —x
+f u', (s —S')N(x,S')dS’], (A3)

for 0 < x < 1. Equation (A3) is derived in Ref. 15. The func-
tion N(x,s) is related to the Riemann function for Eq. (2.14)
and satisfies

N, —N, +B(x)(N, +N,) +D,(x)N=0, 0<x<l,
(A4)
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and boundary conditions for 0 <x < 1,

1
2N(xx) = ¢, B(17) —A(17) — (¢; + l)f D, (s')ds',
2N(x,2 — x)

1
= [c,B(l“) —A(17) + (¢, — l)j D_(s’)ds’]

1
Xepr‘ B(s’)ds’], (AS)

where

D, (x)=}(B*—A4%) +4(—4'+B"). (A6)

The prime in Eq. (A6) denotes differentiation with respect
to x.
Differentiate Eq. (A3) with respect to x and set x = Oin the
resulting equation. Rewrite the left-hand side in terms of
4", and u’; (differentiation with respect to the argument)
using

u (0%,5) =¢co[ —u”, () +u) ()] (A7)
Now integrate this equation from O to s, using the assump-
tion that 4’, (0) =", (0) = ‘. (0) =0, and obtain

2] —uy () + 4, (5)]

= [t+(0,1)]"[ — (e, + D', (9)

1
— (e, — D', (s— 2)epr. B(s’)ds’]
0

+ fsu; (s")F(s — S’)dS’], (A8)
where i
F) =a+bHGs—2) + [ [N, 05)
—1(4 —B)|,. N(0s") JH(2 —s)ds'  (A9)

and
a= —}(e;+1)(4—B)|,. —N©00),

1
b=4(c;~1)(4+ B)|,- epr. B(s’)ds’] — N(0,2),
0

0, s<0,

1, 5>0.

Now evaluate Eq. (A3) at x = 0" and rewrite the left-hand
sideas #', (5) + u”, (s). Use Eq. (A8) to eliminate 4", (s)
from the resulting equation and thus obtain

(co+ 1)((:1 + l)ut.;. €))

H(s) = Heaviside function = {

u', (s) = [t+(0,1)]“[

4co
_ (e =1 (e, = D', (s— 2)exp[ S B(s')ds']
4co
+J>u'+ (s’)W(O,l,s—s’)ds’], (A10)
0
where the W kernel is given by
W(0,1,5) = [¢oN(0,5)H(2 —s) — F(s5)])/4¢c,. (All)

Equation (A10) is the generalization of Eq. (2.23) when
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¢(z) is discontinuous as z = 0 and z = L. Notice from Egs.
(A11) and (A9) that #(0,1,s) is constant for s> 2, a fact
which also follows from the domain of dependence argu-
ments. To evaluate that constant, set

f(x)= f X[Nx (x,5") —%(A —B) xN(x,S’)]dS’
(Al12)
so that, from Eq. (A11),
W(0,1,5) = [k —f(0))/4co, 5>2, (A13)

where

k=N(0,0) +N(0,2) +4(c; + ) (4 — B) |~

1
—-;—(c, —1)(4A+B) exp[f B(s’)ds’]. (Al4)
ot 0

The constant & is known from the boundary conditions Eq.
(A5), so it remains to determine f (0).

Differentiate Eq. (A12) with respect to x and eliminate
the N, term by using Eq. (A4). Upon performing the s’
integrations, it follows that

f'(x) + 34+ B)|.f(x) =g(x), (A15)
where
d d
g(x) = —;‘N(x,x) —‘d—xN(x,Z —X)
+1(4 + B)| . N(xx) + {(4 — 3B)| N(x,2 — x).
(Al6)

Solving Eq. (A15) yields

1 >4
f(0)= —fg(x)exp[-%-f [A(x") +B(x')]dx’]dx.
0 0

(A17)

Using Eqs. (A17) and (AS), a tedious calculation now
shows that

f(0) =k
Hence, W(0,1,s) =0fors>2.
Fortunately, this calculation does not need to be repeat-
ed to verify the compact support of the ¥ * kernels. Instead

observe that if Eq. (A8) is used to eliminate 4’ (s) from Eq.
(A3), then

(A18)

V*(0,1,s) = — W(0,1,5), s>2. (A19)
In a similar manner it follows that
V=(0,1,5) = — W(0,1,5), s>2. (A20)

APPENDIX B: EXACT REPRESENTATIONS OF THE
SCATTERING AND PROPAGATOR KERNELS FOR
CONSTANT A(x) AND B(x)

For constant 4 (x) and B(x) the scattering kernels R *,
T, W, and V £ can be determined analytically. Throughout
this appendix it is therefore assumed that the function
A(x) = Aand B(x) = B, forO<x<1, where 4 and B are real
constants. For the convenience of the reader the basic equa-
tions [see Egs. (3.1), (3.5), (3.15), (4.3), (4.7),and (4.8)]
that are used in this appendix are repeated here:
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R (x,5)
=2R " (x,9,5) —BR " (x, )
— %(A +B)fR *(x,y5 )R * (x,y,5 —5')ds',
0
5>0, (B1)
R*(y,ys) =0,
R*(x,0")= —4i(4—B), x<y;

§>0,

R (x,p5)
= —2R 7 (x,9,5) + BR " (x, ,5)
- %(A - B)J.R “(x, 3,5 )R " (x,y,s —5')ds,
0

$>0, (B2)

R~ (xx,s5)=0, 5s>0,

R7(x,y0")=1(4+B), x<y
T, (x,s5)

= —4(4 +B)[R (% p8)

+JT(x,y,s')R*(x,y,s—s’)dS’], s>0, (B3)
0

T(y,ys) =0, s>0;

W, (x, y.s)

=1(4 +B)[R *(x,p.8)

+J Wi(x, s )R *(x, p,s —S’)dS’], §>0, (B4)
(1]

W(y,ys)=0, s>0;

V(x5
=2V (x,p5) — BV " (x, )
+ %(A - B) W(x’yys),

V¥ (yys) =0, s>0, (B5)
Vi(x,p0")= —1{(4—B), x<y;
V< (x,35)
= =2V (% p5) + BV " (x,ps)
+4(4 — B)W(x, y,s),
V= (xxs)=0, s>0, (B6)

V-(x,p0")=4A4+B), x<y.

These equations can be solved by a Laplace transforma-
tion in the “time” variable s. The Laplace transform of a
function £ is indicate f or A[ f] and the transformed time
variable is denoted by p. In this notation the x and y depen-
dence of transformed functions are suppressed for conve-
nience. Equation (B1) transforms into the Riccati equation

Rr@)—(2p—BR*(p)—4(4—B)
+1(4+B)R **(p) =0,

R+(p)=0, x=yp, (B7)
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with solution

- 1—e—F)
Rr=-4 +(3)(1 +a:-ﬁ)
(B8)
where
a=£(A2—B2)l/2,
B=(y—x)((2p— B)* +4a%)'"?, (B9)

y=((2p—B)* + 423> - 2p + B,
8 = y*/4a’.

It is now rather straightforward to invert each term in
the bracket in Eq. (B8) with the use of the identity

}'((pZ + a2)1/2)

=f(p) — A[af [ (u) Jyla(s* —u?)'y)
0

X (2 —u?) "%y du](p). (B10)
The final result is
R *(x,p.,5)

= —JA-B) S (—1)'H (s — 2n(y —x))
n=0

X {S,(s —2n(y — x))

'S

—2n(y—x)a2f S, (s —5)
2n(y — x)
Ji (s’ — 4n2(y — x)3)'?) ]
ds't, B11
a(srz _ 4n2(y _x)2)l/2 ( )
where
S,(s)=[2n~1)J,,_,(as)
+2n+ 1) Jy, o (as))/as, n=123,..,
(B12)

So(s) =J,(as)/as,

where J, is the Bessel function of order n. Some plots of R *
are shown in Fig,. 5.

The reflection kernel from the right-hand side
R ~ (x, y,5) is easily obtained by replacing 4 with — 4 in the
equations above. With the same definitions of S, (s) as
above, the result is

R~ (x,y.5)
=14 +B)e®” 3 (= 1)"H(s — 2n( y — x))
n=0

X{S,(s —2n(y —x))

—2n(y -—x)azf

2n(y — x)

S,(8 =)

(B13)

Jl(a(slz _ 4n2( y _x)2)1/2) S,]
a(sIZ _ 4n2( y— x)2)l/2
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.. A=10,, B=-1

-2 ,__

: | i | ] 1
0 1 2 3 4 S
Travel time s

FIG. 5. The reflection kernel R *(0,1,s) for three round trips in the medi-
um. Two examples with constant 4 and B profiles are shown.

The transmission kernel T(x, y,s) is obtained from the
Laplace transform of Eq. (B3). The solution in the trans-
formed time variable p is

1446
146 %

=e YT 4L 5) ~ 1

e—r(y—x)/Z

T(p) = — 1+

+e TOm02(14£8) 3 (=)=, (Bl4)

n=1

The inversion of this equation leads to rather cumbersome
algebra. The following identity is of great help:

fla+ @ +a)'"? —p)—F(a)

Al [ - ila(S + 2us) ') d]
_A{ afo e 2 1 2u5) uf (u)dui(p).
(B15)

The result of the inversion is
T(x,y,s)

= — ™S (= )"H(s —2n(y —x))
n=0
X{P,ls —2n(y —x))

'S

—2n(y —x)azf

2n(y—x)

P,(s—5")

J,(a(s'2 . 4n2(y ___x)2)1/2) 1], (B16)

a(SIZ _ 4’12( y— x)2)1/2
where

ro=[CE) G5

Ja(s? + 2us)''?)
- a(sz+2us)”2 u=2(y—x)

=2w~ " *(as){a*s[4n(y — x)

X(s+y—x) — 515 4, (W)

X
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+w[(y—x)a’s—2n(2n+1)

X(s+2(y — ) Wom 1 (w)} (B17)
and
w=als* + 2s(y — x))"/%

Plots of T are shown in Fig. 6.
The solution to Eq. (B4) in the transformed time vari-
able p is

A~ B
Wp)= —14+—"r" 972 (B18)

The inversion of this equation gives
W(x,ys) =3H(2(y —x) —5)e®a*[2(y — x) — 5]
5 (a2(y —x)s —57)'"?)
al2(y —x)s — 57)"/?
Proceeding to the V' * equation, the result in the transformed
variable p is

V*(x,pp) = — 4(4d — B)((2p — B)? + 4a?)~ 12
Xerr—R2[] — =B, (B20)

(B19)

with inverse
V*(x,p8) = —}(Ad—B)H(2(y — x) — s)e?”?
X I(a2(y — x)s — s9)'/?). (B21)

The corresponding result for ¥ ~ (x, y,s) is easily obtained by
replacing A with — A in the equation above. The result is

V= (x,55) =}(4 + B)H(2(y — x) — s)e®"?
XIy(a2(y — x)s — s2)'/2). (B22)

The compact support of the kernels Wand ¥ £, which is a
general property derived in Appendix A, is clearly seen in
Egs. (B19), (B21), and (B22). Typical examples of the ker-
nels Wand V' * are shown in Figs. 7 and 8.

Now having the explicit expressions for the kernels R *,
T, W, and ¥V * for the case when 4 and B are constants, it is
instructive to verify some of the basic equations in this paper
for this special case. For example, the jump in the kernels

Travel fime s

FIG. 6. The same as Fig. 5 but showing the transmission kernel 7(0,1,s).
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0
0l
=
£
=
20 |-
: —— AsS. , Ba-t
----- A=10,, B=-.1
o[
l ! ! | |
0 1 2 3 + 5 s

Travel time s

FIG. 7. The same as Fig. 5 but showing the propagation kernel W(0,1,s).

R * along the plane s =2( y — x) given by Eq. (3.10) is
easily verified from Egs. (B11) and (B13). It s also easy to
verify Eq. (3.11).

Equations (4.9) and (4.10) can also be verified in this
special case of constant 4 and B. These equations are equiva-
lent to the Bessel function identity

—-d—-Jo((tz _ 2.xt) 1/2)
dx

=f Jol(¢7 — ut')'/z)J'—ft-‘-t‘,ldt 3 (B23)
X =

This identity can be proved by showing that both sides are
the same entire function in x.

APPENDIX C: PROPAGATOR DYNAMICS

In this appendix the dynamics of the kernels ¥ * and W
are derived in an alternate manner that does not utilize the
dynamics of R * and T This derivation depends on a contin-

-60 |—

0 1 2 3 4 5 []
FIG. 8. The same as Fig. 5 but showing the propagation kernel ¥ * (0, 1,s).
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uous representation of the propagation operator.

For the sake of convenience, the transformed problem
[Eq. (2.14)] will be the starting point for this analysis, al-
though the derivation could be carried out in terms of the
physical variables that appear in Eq. (2.1). The analysis pre-
sented here is similar in spirit to that given elsewhere*>'? for
derivation of the scattering operator equations. The inde-
pendent variable x in Eq. (2.14) will be replaced by the dum-
my variable z, since x is used to denote the end point of a
subregion [x, y]. The variable z should not be confused with
that appearing in Eq. (2.1). Begin by introducing a split-
ting®® of the field u(z,s) in Eq. (2.14), defined by

u*(zs) =4[u(zs) F9, 'u,(29)],
where

(C1)

3.7 'u,(2,5) =J. u,(z,s')ds'.

In a homogeneous medium, this splitting merely reduces the
field u(z,5) into right moving ( + ) and left moving ( — )
waves. More generally, Eq. (C1) is a change of basis from
(u,u,)Tto (u*,u™)T for Eq. (2.14). In this new basis, Eq.
(2.14) becomes

a u*(z,s)]___[a(z) B(Z)] [u+(z,S)

2l @l lye s@llu(zs
+
Ep(z)[“_(z’s)] , (C2)
u~(z,s)
where
1 ad
= ——[4(@) - B()] - <,
a(z) 2[ (2) (2)] E»
B(z) = [A(z) + B(2)], (C3)

¥(z) =4[4(z) — B(2)],
5(z) = —%[A(z) +B(2)] +%.

Now consider a subregion [x, y] of the original slab. Let
P(x, y) denote the propagator for the subregion [x, y]; i.e.,
Pis a2 X2 matrix of operators that maps the field at y over to
the field at x,

u* (x,s) ut(ys)
- =P(x,y)| _ .
u”(x,s) u= (ys)
Now differentiate Eq. (C4) with respect to x to obtain

(C4)

+ +
ad [ut(x,s) =8PS:y) [u () (C5)

x Lum (x,9) u (ps)l

Use Eq. (C2) (evaluated at z = x) and (C4) to express the
left-hand side of (C5) in terms of the fields at y:

*(38)] _ 9P(x,p) [u+(y,s)
X

_ = _ . (C6)
() a u= ()

D(x)P(x,y) [:

Since (u* ( y,5),u~ ( y,5))T can be chosen arbitrarily, it fol-
lows that

dP(x, y)

Ix =D(x)P(x,.V)

(7))
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It can similarly be shown that

IP(x,y) _
dy
Having now obtained differential equations (C7) and
(C8) for the propagator, a representation for the entries of P
is required. In order to use a representation compatible with
that in Sec. III, let # = be represented by

— P(x, y)D( y). (C8)

. u, (s—z+x), z<x,
uT(z8) =\ , ,
U, (s—z+x)+u_(s—z+y), zpy,
(C9)
_ Wo(s+z—x)+u_(s+z-p), z<x,
u (z8) =y,
u_(s+z—y), z>y.
(C10)

The fields on the right-hand sides of Egs. (C9) and (C10)
are related by [cf. Egs. (2.17)-(2.20), (2.23), and (2.24)
for the special casex =0and y = 1]

wy (s)=[RE(x, ), ()](s)

=J. R E(x,ys —s)u', (s)ds, (C11)
u'y () = [T =(x, 0y (1)](s)
=t t(x,y)[uii (s)
[ Toys—su, (s')ds'], (c12)

w, () =[7"F(x, )’y ()](s)

= [t+(x,y)]“f V*(x,ys—s)u', (s)ds,

(C13)
Uy () =[# (', ()](s)
= [t"(x,y)]“[u'+ (5)
+£ Wi(x,y,s —s)u', (s’)ds']. (C14)

The relations Egs. (3.14) and (3.17) have been used in Egs.
(C12) and (C14), respectively, and ¢ * (x, y) is defined in
Eq. (3.9). In Egs. (C11)-(C14) it is assumed that the fields
are quiescent prior to some finite time s,, although s, is not
necessarily zero.

It is also convenient to introduce a shift operator Q,
whose action on a function of the s variable is defined by

(yx)f ()= f(s+x—yp).
Repeated applications of Q have the obvious interpretation:

Q2 (yx) f(s) = Q(yx)[Q(yx) f ()]
=Q(yx)f(s+x—y)
=f(s+2x—2y),

Q(x, Y)Q(yx) £ () =1 (s).
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Still confining attention to the subregion [x, y], it now fol-  and
lows that um(xs)=u", () +u'_(s+x—y)
=[x p)u', ()](s) +Q(yx)
X[T ™ )u™(p)1(s)
=Qx, ) [7* (x, p)ut (y,)]1(s)
— Q[T (x, )R (x,3,)u”(p,)](s)

+Q(yx) [T~ (x, p)u (3,-)1(5). (Cl16)
Using Egs. (C15) and (C16), the propagator can be written

ut(x,s) =u', (s)
=[x, pu'y ()](s)
=[#* () {ut(y)—u_ ()} (s +y—x)
=0, [ ¥ (x, )u*(y,)1(s)
— Q0 [ ¥ T (xR~ (x, p)u” (y,)]1(s),

(C15)  in the explicit form
1
¥r(x,y) — T (xXR (%) ] 17
P(x,y) =Q(x,)) P xy) QU px)T (%) — P (% 9B (x,9) (C17)

In order to pass from the operator equations (C7) and
(C8) to equations involving the kernels W and V', it is
easier to consider these equations at the level of Eq. (C6).
Setting u~ ( y,5)=0 yields

Q( y»x)é;ix[Q(x,y)V“‘(x,y)u*(y,-)](S)
= [(a(x)77/+(x,y) +B(x)7/+(x,y))u+(y,-)](s),
o y,x)aix[Q(x,y)% o )t (1,)1(5)

= [y # ™ (x,p) +8(x) 7 (x, )™ (p,)](5).
Expressing these equations in terms of kernels produces Egs.
(4.5) and (4.7). Similarly, applying Eq. (C8) to
(u™ ( »,5),0)7 yields Eqgs. (4.4), (4.9), and (4.13) and veri-
fies that the jump in ¥ ™ (x, y,5) ats = 2( y — x) is the same
as that in R * (x, y,5), as given in Eq. (3.10). This last fact
also follows from Eq. (3.20).

With the notation established above, it is now easy to
compare the action of the propagator matrix P(x, y) with
that of the scattering matrix S(x, y). Here S relates the +
components of  according to

[u’“(.v,s)] — St )[ ut(x,s)

u™ (x,5) u= (ys)l’
and is represented by
[Ty Z(x0)
Seo) = R (xy) T ]I

It can be shown (see Ref. 3, 5, or 10) that S satisfies

s _ T (xy) OH a(x) B(x)
dx R (xy) ITll—yx) —6x)
: ]
s C18
X[.%’*(x y) T (xp) ( )
as _ 1 R (x,y)” a(y) By
dy T L—y(y) —8(y)
[7+(x,y) R(x,p)
X
I
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r

where0 and I denote the zero and identity operators, respec-
tively. Equations (3.1)—(3.8) can be obtained from the oper-
ator equations (C18) by rewriting the latter in terms of the
representations (C11) and (C12).
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The one-dimensional inverse scattering problem for inhomogeneous lossy media is considered.
The model problem involves electromagnetic wave propagation in a medium of unknown
thickness with spatially varying conductivity and permittivity. Two inversion algorithms are
developed in the time domain using data obtained from normally incident plane waves. These
algorithms utilize reflection data from both sides of the medium, and one of them also uses
transmission data. These algorithms are implemented numerically on several examples, one of
which includes the effects of noisy data. The possibility of using one-sided reflection data and no

transmission data is reviewed and analyzed.

I. INTRODUCTION

Inverse scattering problems for lossy media are not well
understood, even in the one-dimensional case. Such prob-
lems can be addressed on a variety of levels, depending on
the underlying model of dissipation and the information
sought from the inversion procedure. In this paper a one-
dimensional wave propagation model is considered in which
the dissipation and phase velocity are spatially varying func-
tions; i.e., functions of depth in the medium. The analysis is
carried out in the time domain. Inversion procedures are
developed for simultaneously reconstructing the dissipation
and phase velocity profiles using data obtained from normal-
ly incident plane waves.

In a previous paper' (hereafter called Part I) various
aspects of the direct scattering problem were developed. The
pertinent results from Part I will be summarized in Sec. 11
below. Hence, the reader who is primarily interested in the
inverse problem will find this paper fairly self-contained,
with the exception that the first two sections of Part I should
be consulted for an overview of the problem at hand and also
for an explanation of the notation.

A model problem for the techniques presented here in-
volves one-dimensional electromagnetic wave propagation
in a medium characterized by nonconstant permittivity and
conductivity profiles. A precise statement of the model prob-
lem is given in Part I, Sec. II.

Two inversion algorithms are developed in this paper.
In both of them it is assumed that the medium has finite but
unknown thickness and that reflection data are available on
both sides of the medium. One of the algorithms also re-
quires transmission data. All of these data are in the form of
finite time traces of impulse responses. The specific data re-
quirements are given in Sec. IIL

The inversion procedure using transmission data and
both sets of reflection data is shown in Sec. II1. Two numeri-
cal examples are also given, one of which shows the perfor-
mance of the algorithm using noisy data. In Sec. IV the in-
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version algorithm using only reflection data is given. This is
an iteration procedure, and a numerical example of its per-
formance is also provided. In Sec. V the question of inverting
reflection data from only one side of the medium is consid-
ered. Inversions of this nature have been addressed in pre-
vious works®? under the assumption that either the conduc-
tivity or permittivity is known a priori. In the present paper,
it is shown that if only a finite time trace of the (reflected)
impulse response is known, and no information regarding
the medium is given, then an infinite number of medium
profiles can be found that produce such a time trace.

A number of authors*~® have developed inversion proce-
dures for dissipative media that require two-sided reflection
data as well as transmission data. The inversion procedure
given in Sec. III seems to be more intuitive than these other
procedures since it clearly shows the interplay between the
early time behavior of one reflected signal with the late time
behavior of the reflected signal from the other side. This is
also evident in the inversion procedure in Sec. IV. An inver-
sion procedure using transmission data and one-sided reflec-
tion data has been previously developed,”!! although the
model problem is different from that considered in this pa-
per.

A brief summary is presented in Sec. VI. Also, an exam-
ple is provided that demonstrates that under certain condi-
tions it is possible for two different media to produce the
same two-sided reflection data for time traces corresponding
to one round trip in the medium.

The paper concludes with an Appendix that provides
sufficient conditions for the inversion procedure of Sec. I'V to
be well posed.

. SUMMARY OF PREVIOUS RESULTS

The equations used in the inverse algorithms presented
in this paper are summarized in this section. The reader in-
terested in the details in the derivations is referred to Part I.

The reflection kernels R * (x, y,s) for the subregion

© 1886 American Institute of Physics 1683



1By
[R] = () + B(x)) -I"B( )
FIG. 1. The domain of
R *(x,1,5) for one round trip.
The boundary value of R * at
s =0" and the discontinuity of
R ~ along the line s=2(1 —x)
are also shown.

1 x

R010") = - } () - Bx)

[x, y] satisfy (see also Sec. III, Part I)
R (x5 =2R " (x,5,8) — B(x)R ™ (x,y,5)
—4[4(x) +B(x)]

XJ R*(x,y8)R *(x,y,5 —5')ds',

0

5>0, (2.1)
R*(x,p0%)= —1[4(x) —B(x)], x<y,
R, (%35~ —2R; (x,y5) +B(y)R ~(x,p.s)
—3[4(y) —B(»)] 22)
XJ:R (X, 9,8 )R ~(x,p,s —s5")ds', s>0,

R~ (x,35,0%) =1 [4(y) +B(»)], x<y.

These kernels are discontinuous across the plane
s = 2( y — x). The discontinuities can be related to the in-
ternal properties of the slab (see Fig. 1):

[R*(x, 39523323

'y
—1[4(3) — B(»] exp U B(x')dx'],

(2.3)
[R~(x, 8152358
id
= —1[A(x) + B(x)] exp [f B(x’)dx’].
Furthermore, the kernels satisfy
R*(x,p8) =R (xx+5/2%5), s<2(y—x),
R7(x,p8) =R~ (y—5/27,ps), s<2(y—x).
24)

These last relations express the property that the reflected
field is independent of position of the rear interface for times
less than one round trip.

In Sec. III in Part I, the effect of reciprocity on the trans-
mission kernels 7" * (x, y,5) was analyzed. It was shown that
the two transmission kernels T % (x, y,s) are proportional to
each other as functions of s, as are the propagator kernels
W % (x, y,5). Thus it suffices to consider just one transmis-
sion kernel T"and one propagator kernel . The relations are

T(x,p,5) =T*(x,p,8)/t T (x,y)

=T~ (x,y5)/t " (x,p), 2.5)
W(x,y,s) =W (x,p5)t " (x,p)
=W (x,p,8t " (x,9), (2.6)

where
"y
tE(x,y) =exp{ F %f [A(x') F B(x')]dx']. 2.7)

The resolvent equation which relates 7and W to each other
is

T(x,y.5) + W(x, y.s)

+ f T(x, 3,5 — §') W(x, p,5')ds' =O0. (2.8)
0

The propagator kernel W satisfies the imbedding equations
1
W, (x,y8) = > [4(x) + B(x)] {R T (x, $,5)

+ J- Wi(x,y,s )R *(x,p,s — S’)dS'], >0,
0

(2.9)

W, (x,ys5) =—;— [4(y) —B(y] [R (x, y,5)

+f W(x,y,S’)R_(x,y,s—s’)ds’], s>0.
0
(2.10)

In Sec. V in Part I the extension of data from one round
trip, 0 <s <2( y — x), to arbitrary time s is derived. Trans-
mission data and reflection data for 0 <s < 2( y — x) are ex-
tended to s> 2( y — x) by the following equations:

T(x,ys) + f W(x,y,s —5)T(x,,s)ds'
K 2(y—x)
— G(x, ps) = —J;_z(y_x) W(x,y,s —s)T(x,y,5)ds', 2(y—x)<s<4(y—x), 2.11)
0, ’ s>4(y —x),
R ¥ (x,y,s5) = J:(y—” T(x,y,s—5') [R E(x,p5) + J: W(x,y,s' —s")R * (x, y,s”)ds"]ds', s>2(y—Xx). (2.12)
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Iil. THE INVERSION ALGORITHM WITH COMPLETE
DATA

The new algorithm presented in this section utilizes a
complete set of data, namely the two (physical) reflection
kernels R *(0,1,5) and the (physical) transmission kernel
T(0,1,s) for a complete round trip in the slab, 0 <s<2.
These data are complete in the sense that they can be ex-
tended to arbitrary time s by the extension procedure de-
scribed in Sec. V in Part I. Loosely speaking, the algorithm
combines an early time behavior in R £ with a late time
behavior in R T and the properties of the discontinuity in
R T, This statement and its more precise meaning will be-
come much clearer in this section.

All the data described above and the constant G(1) de-
fined below are needed to recover the two unknown func-
tions A(x) and B(x), 0 <x < 1. From these two functions it
is then easy to find the unknown permittivity and conductiv-
ity as a function of z as well as the total length L of the slab.
However, two more constants are needed to transform from
A and B to € and 0. Thus the complete set of data to simulta-
neously recover both the permittivity and the conductivity
are

R*(0,1ls), 0<s<2,
R7(0,1,5), O0<«s<2,
T(0,1,5), O<s<2, (3.1)
G(1),
A
€(0) or e(l),
where

G(x) =1/[t*(0x)t ~(0x)]

= exp [ —f B(x')] dx’'
0

[see Eq. (2.7) for a definition of # = (x,y)], and G(1) isa
constant associated with the attenuation of the field within
the slab. From the definition of the transmission operators
[Eqgs. (2.18) and (2.20) in Part I], G(1) is a measurable
quantity. The constant / [see Eq. (2.6) in Part I} is a con-
stant related to the total time of measurement. The permit-
tivity €(0) at the left interface [or e(L) at the right] is also
assumed to be known from experimental data.

The inversion algorithm works from one side of the me-
dium to the other. For convenience the algorithm is present-
ed for a propagation from the left-hand side of the slab
towards the right and all the details of the alogorithm will be
shown for this particular choice. Thus, the subregions to be
considered are of the form [x,1] with y being fixed at 1. The
necessary modifications to propagate from the right-hand
side are rather straightforward.

In Eq. (2.3), the jump across the plane s =2(y — x)
was given as a function of the internal properties of the slab.
This jump can, however, be expressed in an alternative way
by the extension of data presented in Sec. V in Part I. Sup-
pose the reflection data are known for s<2(py —x). In
terms of these data the value just above the plane
§ = 2(y — x) can be calculated from Eq. (2.12). The result-
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ing jump is
[R *(x,p8) {233 25°

2( y — x)
=f Tix,p2(y—x) —5) [R T(x,»5)

0

s

+ f W(x, s —s")R *(x,ys")ds" ]ds’
0

—R i(",y,z(y—x)_)

2(y — x)
= _f Wix,»2(y—x) —S)R * (x,y,5)ds

o

—R £(x,9,2(y—x)7). (3.2)

The resolvent equation, Eq. (2.8), has been used to simplify
the expression above. In particular, the jump in the reflec-
tion kernel R ~ for y = 1 can, with use of Eq. (2.4), be ex-
pressed as

[R™(x L) 5230200
2(1 — x)
= —f Wix,1,2(1 —x) —s')R ~(0,1,5")ds’
0

—R-(0,1,2(1 —x)7). (3.3)

It should be noted that only the physical kernel R ~(0,1,s),
0<s<2,is used in Eq. (3.3).

From the equations above it is now clear that knowing
R % (x,1,5) and W(x,l,s) for a fixed x gives two linearly
independent relations between the two unknown functions
A(x) and B(x) at the point x. This can be seen by combining
Egs. (2.3) and (3.3) together with the early time behavior of
R *(x,1,5) in Eq. (2.1),

2(1 — x)
f Wix,1,2(1 —x) —s')R —(0,1,5")ds’

0

+R 7(0,1,2(1 —x)7) (3.4)

1
=_41_ [4(x) + B(x)] exp U B(x')dx'] ,
R +(x91’0+) = - i [A(X) —B(x)]‘

Before describing the general inversion algorithm, the
initialization of the procedure is addressed. From the data in
Eq. (3.1) the resolvent W(0,l,5), 0 <s<2, is obtained by
solving Eq. (2.8) at x = 0. Equations (3.4) are then easily
solved for A(x) and B(x) at x = 0 and the initialization of
A(x) and B(x) is completed.

The inversion scheme can now be written down in a
general setting. As in earlier works,>' which used only the
R * equation [Eq. (2.1)], a grid of points is established in
(x,5) space. The mesh is uniform in each direction, with
As = 2Ax, which takes advantage of the directional deriva-
tive nature of Eq. (2.1). Now Eqgs. (2.1) and (2.9) are dis-
cretized on this grid. The calculation proceeds from left to
right across the grid, starting at x = 0 and marching to
x = 1, with 0<s<2(1 — x). In its most basic form, the inver-
sion algorithm for determining 4 (x) and B(x) is as follows.

(1) Equation (2.9) is used to explicitly step W(x,1,s)
forward in the x direction to the next set of x grid points.

(2) Equation (2.1) is used to implicitly step a portion of
R * (x,1,5) forward in the x direction to the next x grid point
ats=0.
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(3) Equations (3.4) are used at these new x grid points
to obtain 4 (x) and B(x).

(4) Equation (2.1) is used to implicitly step the remain-
ing R *(x,1,s) data forward in the x direction to the next set
of x grid points.

(5) Now repeat steps (1) through (4) to move one step
deeper into the slab.

This procedure can be modified in a number of ways to im-
prove its numerical accuracy. Details regarding the numeri-
cal implementation are not discussed here.

There are some interesting points to notice in the inver-
sion algorithm outlined above. First, the transmission data
T(0,1,5) are used only in the initialization step, and there-
after it is the resolvent of 7' that is used to step into the
medium. Second, since the calculation is being carried out in
the plane y = 1 (see Part I, Fig. 4), the R ~(0,1,s) data are
constant on lines of constant s. Therefore, it is not necessary
to propagate R ~ into the medium via an integrodifferential
equation; rather, it is the physical data R ~(0,1,s) that ap-
pears in Eq. (3.4).

The final step in the inversion scheme is to calculate the
depth z(x), the total length L, the permittivity €(z), and the
conductivity o(z) from the profile functions 4 (x) and B(x),
0 <x < 1. From the definitions of A(x) and B(x), given by
Egs. (2.15) and (2.16) in Part I, it is easy to obtain the

True

....... Reconstructed

Relative permittivity
I

Depth 2
$.00E-03 [—
———— True
....... Reconstructed
4.00E-03
& 3.00E-03
H
£
g 2.00£-03
1.00E-03
0.00E+00 L
] 2 4 6 8 10
Depth z

FIG. 2. The relative permittivity and conductivity profiles in example 1.
The depth is given in m.

1686 J. Math. Phys., Vol. 27, No. 6, June 1986

following relations:

/ * 3
z(x) =—~——f exp [ — f5 A(x")dx" ]dx’,
Vo€ (0) Jo °
O<x<«l, (3.5)
€z(x)) = e(O)exp[2J A(x')dx’] , (3.6)
0
ofz(x)) = —€(0)B(x)exp[2 fg 4(x")dx"] ‘ (3.7)

!

Travel time a

R(0,18)

| | |
2 3
Travel time s

o
-

1(0,1,5)

-2

S I IS SN
1 2 3 4
Travel time s

FIG. 3. The physical scattering kernels R * (0,1,s) and T(0,1,s) for exam-

ple 1. Two round trips are shown. The value of 7(0,1,0*) is marked with a
solid dot.
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0}

-4 | L |
0 1 2 3 4
Travel time s

FIG. 4. The resolvent kernel W(0,1,s) for example 1. Two round trips are
shown. The value of W(0,1,0*) is marked with a solid dot.

In particular, the total length L of the slab is
S
Vo€ (0)

The results of some inversions are now shown. In all of
the examples in this paper, synthetic R * data were generat-
ed using Egs. (2.1) and (2.2),and T data were generated via
Eq. (3.15) in Part I. The procedure for doing this was to first
choose an (€(z),0(z)) profile, convert to an (4(x),B(x))
profile, generate R * and T for two different step sizes (Ax),
and then extrapolate those results to obtain the data for the
inverse problem. The accuracy of all numerical algorithms
was verified using the exact solutions displayed in Part I,
Appendix B. All calculations were performed in single preci-
sion on a VAX 11/750.

Example 1: The (€,0) profiles in this example are ap-
proximately piecewise constant, as shown in Fig. 2. (Recall
that the derivations required that € be smooth.) The length
of the medium is 10 m and permittivity relative to that of free

1
L= f exp[ — S5 A(x")dx"]dx’. (3.8)
0

Travel time s
2.0 1.5 1.0 0.5 0.0

Reflection kernels

0.0 0.5 1.0 1.5 20
Travel time s

FIG. 5. The physical reflection kernels R * (0,1,s) for example 1 for one
round trip. The solid line is the time trace for R * and should be read from
left to right using the lower scale in the figure. The dotted line shows R ~ and
should be read from right to left using the upper scale.
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104

102

96

3.00£-03

2.00E-03

Conduuctivly (mho/m)

1.00£-03

0.00E+00
0 8 10

Depth

FIG. 6. The relative permittivity and conductivity profiles in example 2.
The solid lines are the true profiles and the broken lines and the circles are
reconstructions using noisy data. Each reconstruction uses 129 data points,
but for graphical clarity not all circles are displayed. For an explanation of
the noise, see the text. The depth is given in m.

space is shown. Scattering data for this medium are dis-
played in Fig. 3 for two round trips in the medium, although
it is only the data for 0 <5 < 2 that are used in the inversion
algorithm. It is difficult to see the discontinuities in
R *(0,1,5) at s = 2. Figure 4 shows the resolvent kernel
W(0,1,s), which is obtained from Eq. (2.8). Notice the com-
pact support, with W vanishing for s> 2. The R * data are
shown differently in Fig. 5, with the R * time scale running
along the bottom axis and the R ~ along the top. The spikes
in the two time traces line up at corresponding regions of
high reflectivity in the medium. Those traces decay toward
zero quite rapidly due to the absorption of energy in the
medium and the reflection of energy out of the medium.

The reconstructed profiles are shown in Fig. 2. These
reconstructions used 513 data points from each of the time
traces for R * and T. There is essentially no difference if 257
points are used instead.

Example 2: The performance of the inversion algorithm
with noisy data is now examined. The medium profiles are
shown by the solid lines in Fig. 6. The exact scattering data
for these profiles are shown by the solid lines in Fig. 7. Gaus-
sian white noise was then added to the kernels, resulting in
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Travel time s

0.00

-0.20

R(0,13)

~0.60 I | |
0.0 0.5 1.0 1.5 2.0

Travel time s

1(0,1,3)

Travel time s

FIG. 7. The physical scattering kernels R * (0,1,s) and T(0,1,s) for exam-
ple 2. The solid lines are the time traces without noise and the broken lines
show the noisy data with rms S /N = 1.8. For further details, see the text.

the corrupted data shown by the broken lines in Fig. 7. The
signal to noise ratio for these data is approximately 1.8. The
noisy data were smoothed using two applications of a five
point linear least squares smoother. (The first application
left too much high-frequency noise in the data.) The broken
line in Fig. 6 shows the resulting reconstructions using 129
data points. The reconstruction was carried out a second
time with noisy data having signal to noise ratio of approxi-
mately 6.8. The results are much improved, and are shown
with circles in Fig. 6. In the absence of noise, the reconstruct-
ed profiles are indistinguishable from the original profiles.

The definition of the root mean square signal to noise
ratio (rms.S /N) that was used above is

2 172
rms S/N = [ f [K(0,1,5) —K ]? ds] /20).
(1)

Here, o denotes the standard deviation of the noise, K(0,1,5)
denotes a noisy scattering kernel, and

2
1?=lf K(0,1,5)ds.
2 Jo

IV.INVERSION USING REFLECTION DATA FROM BOTH
INTERFACES

In the previous section an inversion algorithm was pre-
sented that utilized both of the reflection kernels and the
transmission kernel for one complete round trip in the slab.
These data are sufficient to recover both 4 and B (i.e., € and
o) for the medium. In this section an inversion algorithm is
given that uses only the reflection data R * (0,1,s) for a com-
plete round trip. More explicitly, the data are a subset of
(3.1), namely, R *(0,1,s), 0<s<2, and constants / and
€(0) [ore(L)].

The algorithm is an iteration procedure. It has the prop-
erty that the iterates may not converge, and if they do con-
verge, the result may not be the correct solution. However,
sufficient conditions for convergence to the correct solution
are supplied in the Appendix.

The basis for the inversion algorithm is Eqs. (2.1) and
(2.2). Begin by setting y = 1 in Eq. (2.1) and using the di-
rectional derivative nature of that equation to rewrite Eq.
(2.1) in integrated form as

R*(x,1,s) = R *(0,L,s + 2x) —f {BG)R (¥, Ls + 2(x — x))
0

+3[4(x') +BG&)IR ¥ * R )X, 1,s 4+ 2(x — x"))}dx’,

where the * operation denotes convolution in s,

(f*+8)(x,p5) = J- S(x,ys5)g(x, y,s — 5')ds’.
0
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Similarly, in integrated form, Eq. (2.2) becomes (with x = 0)

1
R=(0,7.5) =R ~(0,Ls+2(1—) —f {B(Y)R (0,55 +2(¥ — )
¥y

—3[4(y) —B(¥)IR ™ «R7)0,ys+2(y —p)}dy.

(4.3)

Notice that the first term on the right-hand side of Egs. (4.1) and (4.3) is the given reflection data. Denote this by

F£(s) =R *(0,1,5).

(4.4)

Now Eqgs. (4.1) and (4.3) form the basis for an iteration procedure given by

R} (x1,s)=F*(s+2x) ——f {B,(x)R;(x'\15+2(x—x"))
0

+1[4,(x) +B,(x)] (R} *R}F)x,1,s+ 2(x — x))}dx',

with 0<x<1,0<s<2(1 —x),n=1,2,3,.., and

4.5)

1
R (0,p5) = F~(s+2(1 =) —f {B,(Y)R7 (0,55 +2(y =)
y

—3[4.()) =B, (V)R *R.7)0,Ys+2(y —y)}dy,

with O<y<1,0<s<2y,andn = 1, 2, 3,... . The functions 4,
and B, are defined as

An (x) = 2[R n— (0,x,0+) - R n+ (x,l,0+)],
4.7)
B,, (x) = 2[R n (O,x,o+) +R n+ (x,1p0+)]9

which is suggested by the initial conditions given in Egs.
(2.1) and (2.2). One method for starting the iteration is to
choose

R [ (x,1,5) = F* (s + 2x),

(4.8)
R (0,p8)=F~(s+2(1—p))
Now if the iterates converge,
RXR %, (4.9)

then it is natural to define 4 (x) and B(x) by Eq. (4.7), with
subscript n removed from all quantities. Also, notice that if
the iterates converge, then the limit functions given in Eq.
(4.9) agree with the given reflection data when x is set equal
to 0 and y is set equal to 1.

It is interesting to note that the initialization procedure
given in Eq. (4.8) is a generalization of the nondissipative
Bremmer approximation given in Ref. 12. It corresponds to
ignoring dissipative effects on the reflected fields as well as
ignoring multiple scattering effects. Hence, in a weakly dissi-
pative, weakly scattering medium, Eqs. (4.7) and (4.8)
themselves yield a good approximation to 4 and B given by

A(x)=A(x) =2[R[(0,1,2(1 —x))—R ' (0,1,2x)],
(4.10)
B(x)=B,(x) =2[R(0,1,2(1 —x))+ R}V (0,1,2x)].
Continuing the iteration can be thought of as bringing high-
er-order effects into the calculation.
Sufficient conditions exist to guarantee that the scheme

1689 J. Math. Phys., Vol. 27, No. 6, June 1986

(4.6)
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FIG. 8. The relative permittivity and conductivity profiles in example 3.
The solid lines are the true profiles, and the broken lines are the initial ap-
proximations given by Eq. (4.10). The dotted lines show the profiles after
20 iterations. After 60 iterations the profiles coincide with the solid lines.
The depth is given in m.
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FIG. 9. The physical reflection kernels R * (0,1,s) for example 3.

does converge to one and only one solution. These are condi-
tions on the physical reflection data and therefore have prac-
tical implication. The conditions are

|F*(s)|<f, O0<s<2, (4.11)

where f = (11/422 — 50)/27-=0.059 06. In the Appendix,
it is shown that if the condition (4.11) is satisfied, then the
solution of the inverse problem, (4,B), exists, is unique, and
depends continuously on the data F *. Thus, in this case,
reflection data alone suffice to reconstruct 4 and B.

These positive results do not imply that any two func-
tions F * satisfying (4.11) correspond to scattering data for
some physical medium. This is because the reconstructed
B(x) may be greater than O, a result that is nonphysical for
the model problem, Eq. (2.1) in Part I. Also, condition
(4.11) is not a necessary condition for convergence, as will
be apparent from the following example.

Example 3: The € and o profiles are shown in solid lines
in Fig. 8, and the corresponding R * data are shown in Fig.
9. Notice that these data do not satisfy condition (4.11).
Nevertheless, the iterates converge to the original profiles in
Fig. 8. The broken lines in Fig. 8 display the estimates of €
and o given by the initialization procedure in Eqs. (4.8), or
equivalently in Egs. (4.10). After 20 iterations the estimates
of € and o are given by the dotted lines in Fig, 8. After 60
iterations the estimates coincide with the original profiles.
Continuing the iteration procedure produces no change in
the estimated profiles.

V. INVERSION USING REFLECTION DATA FROM ONE
INTERFACE

It was shown in the previous section that under certain
circumstances, reflection data from both interfaces can be
used to uniquely reconstruct 4 and B. In this section some
aspects of reconstructing 4 and B are considered for the case
in which the data consist onlyof R * (0,1,s) for 0 < s < 2. This
is an important problem since it corresponds to the case in
which all data measurement is carried out on one side of the
slab and consequently, a semi-infinite medium can be con-
sidered. In such a case, the parameter / defined in Part I, Eq.
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(2.6), is given by

I=1t,../2, (5.1)

where data is collected for physical time ¢ in the interval
0 <t <t,,,- Thus, only a finite portion of the medium can be
probed, namely, that portion for 0 <z < L, where L is given
in Part I, Eq. (2.6), with / as in Eq. (5.1) above.

In this case it seems intuitively clear that nonunique
solutions (4,B) should exist, provided the data correspond
to a physical reflection kernel. The intuition here is that a
single function of s (for 0 <s<2) cannot be used to recon-
struct two independent functions 4(x), B(x) forO<x < 1.

If it is known a priori that the medium is nondissipative
so that B =0, then Eq. (2.1) can be used in an inversion
algorithm to recover 4 (x). This has been shown in Refs. 2
and 12. More generally, if the conductivity o(z) is known,
then Eq. (2.1) can be used to recover the permittivity €(z) or
vice versa. Such problems have been considered in Refs. 2, 3,
and 13. Integral equation methods for solving problems of
this latter variety have been considered by Bolomey et al.'*
and Tijhuis."’ It has also been shown by Corones et al.>*'?
that if the a priori information about conductivity (or per-
mittivity) is incorrect, then the resulting reconstruction can
degrade somewhat dramatically.

The question now addressed is, “What profiles pairs
(4,B) [or (e,0)] produce the same one-sided reflection
data, R * (0,1,5), for 0 < s <2?” A partial answer to this ques-
tion will be given by considering media with “small” profile
functions 4 and B. In this case the explicit dependence of the
refiection data on 4,8 can be given asymptoticaily.

To carry this out, set y =1 in Eq. (2.1) and again use
the directional derivative nature of that equation to obtain
for0<s<2(1 —x),

R*(x,1,5) =1 [B(x+5/2) —A(x +5/2)]

X + 5/2
+ {B(x")R *(x',1,s + 2(x — x"))

+1[AX) +B)I(RT*R™)

(x',1,s + 2(x — x'))}dx'. (5.2)

This integrated form of Eq. (2.1) is well suited to the study
of the direct problem, while Eq. (4.1) is better suited to the
inverse problem. Now define a sequence of iterates given by

R,(x,1,s) =} [B(x +5/2) —A(x +s/2)],
R, (x1,5) =} (B(x +/2) — A (x +5/2))

x + 5/2

+ {B(x)R, (x',1,s + 2(x — x"))

+1[4A(x") + B(x)](R, *R,)

(x',1,s + 2(x — x"))}dx', (5.3)
where n = 1,2,3,... . Define A by

A= JSup {|4(x)|,|B(x)|}.

<X <

For small A it follows that the reflection data, R * (0,1,5), are
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asymptotic to R,(0,1,s), with
R +(O,1,S) ~R2(0,I,S)

1 s s 2 '\ !
=_.(B (_) "y (_) 1+ | Be)dx
4 2 2 o
+0(4?), A0, (5.4)

Thus, two profile pairs, (4,, B,) and (4,, B,), produce the
same reflection data (asymptotically) for 0 <s <2 if

(By(x) — Ag(x)) (1 +f Bo(x’)dx’)
(1]

= (B,(x) —Al(x))(l +f B,(x’)dx’). (5.5)
0

Notice that it follows from Eq. (5.5) that 4, = 4, if and only

if B,=B,.

It is interesting to consider Eq. (5.5) for the special case
involving a homogeneous, dissipative medium. Thus, as-
sume that both €(z) and o(2) are constants denoted by € and
o, respectively. Then 45(x)=0and By(x) = — B = —lo/
€, where Bis small. An equivalent, nondissipative scatterer is
then obtained from Eq. (5.5) by setting B, (x)==0 and solv-
ing for A, (x) [with corresponding permittivity €,(z) ]. This
yields

A, (x)=B(1—-Bx), O0<x<l, (5.6)
and so, from Egs. (3.5) and (3.6),
I [ O AV
z(x) = f exp[ — Bx (1 - -——)]dx , (5.7)
Vepo Yo 2
€,(z(x)) = €exp [28x(1 — Bx/2)]. (5.8)

Notice from Eq. (5.8) that €,(2) is an increasing function of
z, while Eq. (5.7) shows that the depth L, of this equivalent
medium has decreased from the original depth L, to

L,=L, J: exp [ —pBx' (1 -—é;—’)] dx'.

These conclusions are in agreement with the numerical re-
sults given in example 1 of Ref. 2, which suggest that equiva-
lent scatterers that are obtained by decreasing o result in an
increasing permittivity profile and a more shallow medium.

(5.9)

VI. SUMMARY AND CONCLUSIONS

In Sec. III a new time domain inversion procedure for
lossy media is developed. The algorithm uses the set of data
given by (3.1). With the concept of “extension of data” de-
veloped in Part I, this set of data can be used to derive the
entire time trace of the scattering kernels. However, data
from only one round trip are explicitly used in the algorithm,
The possibility of using longer time traces is not addressed in
this paper.

At first sight it may seem a little surprising that three
functions of time (R * and T) have to be given in order to
obtain the two unknown functions 4 (x) and B(x) [or €(z)
and o(z)]. It is, however, interesting to observe that other
authors*™® use similar data sets to invert lossy profiles. The
next example shows the importance of transmission data for
reliable reconstructions when data from only one round trip
are used.

Example 4: In this example it is shown that two different
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FIG. 10. The relative permittivity and conductivity in example 4. The depth
is given in m.

media can produce virtually identical R * reflection data for
times less than one round trip through the slab, while at the
same time producing different transmission data. The two
different profiles are shown in Fig. 10 and the corresponding
scattering data are given in Fig. 11. The dotted line profile
was found by the iteration scheme presented in Sec. IV. It is
seen that reflection data are virtually identical up to one
round trip. At later times the reflection data are different as
well as their discontinuities at one round trip. The transmis-
sion data, however, are different for all times. The two pro-
files are thus equivalent in that they are indistinguishable by
just using reflection data for times less than one round trip.
Consequently, transmission data are necessary (in general)
for reliable reconstructions.

An iterative inversion scheme using only reflection data
for one round trip is presented in Sec. IV. The limitations of
this inversion algorithm are illustrated by the example in this
section. However, sufficient conditions for convergence of
the iteration scheme are derived in the Appendix. Notice
that this scheme is much more computer intensive than that
of Sec. III, with one step of the iteration taking as long as the
entire inversion procedure when transmission data are also
available.

The effect of using reflection data from one side only is
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FIG. 11. The physical scattering kernels R * (0,1,s) and T'(0,1,s) for exam-
ple4. Two round trips are shown. The solid (dotted) lines correspond to the
solid (dotted) line profiles in Fig. 10.

discussed in Sec. V. It is shown that for weakly scattering
media (in which only the lowest-order multiple scattering
effects are important), an entire family of media can be gen-
erated that produce the same one-sided reflection data for
one round trip in travel time. In particular, this implies that
for a semi-infinite medium, it is impossible to determine both
€(z) and o(z) from reflection data using normal incidence.
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APPENDIX: CONVERGENCE OF THE ITERATION
PROCEDURE

This appendix shows an analysis of the iteration proce-
dure given in Sec. IV. In particular, it is shown that the
condition in Eq. (4.11) guarantees the convergence of the
iterates, the uniqueness of the solution and the continuous
dependence of the solution on the data F *.

To begin, suppose the reflection data are bounded by a
constant f over one round trip in the slab, i.e.,

|[F*(s)|<f, O<s<2. (A1)

Does it follow that all the iterates R F, given in Egs. (4.5)
and (4.6), are uniformly bounded? Assume there is a con-
stant b such that, for all »,

|R ¥ (x,1,5)|<b, 0<x<1, O0<s<2(l—x),
IR (0,ps)|<b, 0<y<l, 0<s<2y. (A2
In this case, it follows that
|4, (x) + B, (x)| =4|R ;7 (0,x,0)|<4,
(A3)

|B, (x)|<4b,
from Eqs. (4.7). Consequently, from Eq. (4.5) it is seen that
IR (x%,1,8)|[<f+ 4b%x + 2b°x(s + x)
<Sf+4b% 4207, (A4)
for 0<x<1,0 <5 <2(1 — x). Similarly, it can be shown that
IR 741 (0,3,8)|<f+4b* +2b°, (A5)

for 0<y<1, 0 <s < 2y. In order to satisfy the uniform bound
on the iterates given in Eq. (A2), it therefore suffices to
require that

[+ 4b> 4+ 2b7<b. (A6)
The object is to now choose the largest value of fsuch that a

positive b exists which satisfies Eq. (A6) and therefore Eq.
(A2). This occurs when

8b+6b%=1 (A7)
or

b=by= (22 — 4)/6=0.115 07, (A8)
and consequently

f=fo= (11422 — 50)/27=0.059 06. (A9)

Having shown that it is possible for the iterates to re-
main uniformly bounded, it now must be demonstrated that
the iterates actually converge. This follows from the contrac-
tion mapping principle, or equivalently from a comparison
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of successive iterates. To see this, assume
|F£(s)|<fi<fo 0<s<2,
so that

|R :- (x,l,s)|,|R " (O’yys) l<bl <bo

(A10)

in the appropriate triangular regions. Define for » = 1,2,...
- |

|R:+l<x,1,s>—R:<x,1,s>l<f B,(R} —R} ) +R
(4]

n—1

(with R & =0)
¢, = sup [|R}(x1s)—R; (x5,

(x, y,5)

IR, (0,95 =R, ,(0,y5)]], (All)

with arguments x, ,s in the relevant domains. Now from Eq.
(4.5) it follows that

(Bn _Bn—l)

+2R - (0x'0")[R,*RS—R,} ,*R ]

+2[R7(0x,07) —R 7, (0x,07)](R;_, *R}_)|dx'<ke,

where
k=8b+6b% <1, (Al13)

this last inequality following from the fact that b, < b,. [In
Eq. (A12) the # denotes convolution in s and the suppressed
arguments in B, and the R ™ iterates are x' and
(x,1,5 + 2(x — x')), respectively.] Similarly, it can be
shown that

IR 74 1€0,35) — R [ (0,5 |<ke,,
and consequently

cn +1 <kc n
Hence, the iteration converges since k < 1. Standard argu-
ments now show that if Eq. (A 10) is satisfied, then the iter-
ation converges to a unique limit as long as the initial iterates
R £ are bounded by b, < b,

Finally, to show continuous dependence on the scatter-
ing data, suppose two sets of reflection data F * and F *
both satisfy Eq. (A10) and

|F£(s) —F £ (s)| <e.

Denote the corresponding iterates by R ;= and R £, All of
these iterates are uniformly bounded by some b, < b,. Define

d,= sup [[R;(x1s5) —R}(xLs),
(x, y,5)

IR,7(0,p) —R 7 (0,p35)]], (Al4)
with x, y,s in the appropriate domains. Using Eq. (4.5) with
each set of data then yields [in a manner similar to that in
which Eq. (A12) was derived]

IR (1) —R 7 (x,19)| <€ + kd,

where k is given by Eq. (A13). Consequently, it can be
shown that

d,, <€+ kd,.
Since d, < € it follows from (A15) that

n—1

d,<e ¥ ki<
j=o

(Al5)

€
1-k

b
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(A12)

for n = 1,2,... . Hence,
|d(x) —A(x)| <4e/(1 - k),
|B(x) —B(x)| <4€/(1 —k),

where & < 1. This established the continuous dependence of
A and B on the scattering data.

'G. Kristensson and R. J. Krueger, “Direct and inverse scattering in the
time domain for a dissipative wave equation. Scattering operators,” J.
Math. Phys. 27, 1667 (1986).

2J. P. Corones, M. E. Davison, and R. J. Krueger, “The effects of dissipa-
tion in one-dimensional inverse problems,” in Inverse Optics, Proceedings
of the SPIE, Vol. 413, edited by A. J. Devaney (SPIE, Bellingham, WA,
1983), pp. 107-114,

%J. P. Corones, M. E. Davison, and R. J. Krueger, “Dissipative inverse
problems in the time domain,” in Inverse Methods in Electromagnetic
Imaging, NATO ASI series, Series C, Vol. 143, edited by W-M. Boerner
(Reidel, Dordrecht, 1985), pp. 121-130.

“M. Jaulent, “Inverse scattering problems in absorbing media,” J. Math.
Phys. 17, 1351 (1976).

M. Jaulent, “Inverse scattering problem for LCRG transmission lines,” J.
Math. Phys. 23, 2286 (1982).

V. Weston, “On the inverse problem for a hyperbolic dispersive partial

* differential equation,” J. Math. Phys. 13, 1952 (1972).

V. Weston and R. J. Krueger, “On the inverse problem for a hyperbolic
dispersive partial differential equation. I1,” J. Math. Phys. 14, 406 (1973).

8V. Weston, “On inverse scattering,” J. Math. Phys. 15, 209 (1974).

°R. J. Krueger, “An inverse problem for a dissipative hyperbolic equation
with discontinuous coefficients,” Quart. Appl. Math. 34, 129 (1976).

'°R. J. Krueger, “An inverse problem for an absorbing medium with multi-
ple discontinuities,” Quart. Appl. Math. 36, 235 (1978).

YR. J. Krueger, “Numerical aspects of a dissipative inverse problem,”
IEEE Trans. Antennas Propag. AP-29, 253 (1981).

12y, P. Corones, M. E. Davison, and R. J. Krueger, “Direct and inverse
scattering in the time domain via invariant imbedding equations,” J.
Acoust. Soc. Am. 74, 1535 (1983).

133, P. Corones, R. J. Krueger, and V. H. Weston, “Some recent results in
inverse scattering theory,” in Inverse Problems of Acoustic and Elastic
Waves, edited by F. Santosa, Y. Pao, W. Symes, and C. Holland (SIAM,
Philadelphia, PA, 1984), pp. 65-81.

'J. C. Bolomey, D. Lesselier, C. Pichot, and W. Tabbara, “Spectral and
time domain approaches to some inverse scattering problems,” IEEE
Trans. Antennas Propag. AP-29, 206 (1981).

A. G. Tijhuis, “Iterative determination of permittivity and conductivity
profiles of a diclectric slab in the time domain,” IEEE Trans. Antennas
Propag. AP-29, 239 (1981).

G. Kristensson and R. J. Krueger 1693



Reflection and refraction of a spherical acoustic wave from a thin layer

N. C. Banik

Arco Oil and Gas Company, P. O. Box 2819, Dallas, Texas 75221

I. Lerche

Department of Geology, University of South Carolina, Columbia, South Carolina 29208
(Received 30 April 1985; accepted for publication 5 February 1986)

The behavior of a spherical acoustic wave impacting on a thin, parallel slab of material of
thickness L is investigated. It is found that the reflected wave may have a so-called head-wave
contribution when the slab has a higher acoustic velocity than the surrounding medium.
However, the effects of the finite slab thickness are to delay the head-wave arrival time relative to
that from a single interface, to diminish its amplitude, and modify the frequency response of the
amplitude, and to cause multiples from the base of the slab to produce far-field interference fringes
(the analog of Newton’s rings). In addition, in the case where the slab has a lower acoustic
velocity than the surrounding medium, no head wave results, but the far-field interference pattern
persists. As the slab thickness is increased relative to the acoustic wavelength both the
interference effects and the head-wave modifications increase with increasing thickness, for
thicknesses small compared to the acoustic wavelength.

I. INTRODUCTION

In previous papers in this series Hill and Lerche' and
Lerche? considered the behavior of the reflected component
of a spherical acoustic wave incident upon an interface. The
response of the wave to reflection from a rough interface was
discussed,' as was the response to reflection from a smooth,
but slightly curved, interface.” In particular the interest in
both papers centered on the so-called head-wave component
of the reflected signal,>-¢ which occurs ahead of the directly
reflected specular signal,’ at lateral reception points far dis-
tant from the source. The head wave then provides a clear
diagnostic, uncluttered by overlapping detritus from the di-
rectly reflected signal, of acoustic impedence conditions at
the interface. This fact is often used in seismology>~* to pro-
vide a measure of variations in subsurface lithologies with a
depth for thick sedimentary layers that would otherwise be
difficult to obtain.

On the other hand, it is certainly the case that not all
lithologic units are sufficiently thick that they can be treated
as single interface reflectors. In particular, a thin interbed-
ding of shale and evaporite layers, as occurs, for example, in
Ras-al-Khaimah,>!° where the beds are only a few feet thick,
much less than the typical seismic wavelength of a 100 ft or
so, would obviously produce a different head-wave response
than would a single interface. This can be an important con-
sideration in analyses attempting to unravel the causes for
the behavior of acoustic wave amplitude with offset.

The question we address here is related to this problem.
What is the acoustic reflection response of a layer of materi-
al, sandwiched between two identical semi-infinite media, to
a spherical acoustic wave incident upon the interfaces
between the layer and the surrounding media? Clearly as the
layer thickness tends to O both the direct wave and its multi-
ples, as well as the head wave, must become vanishingly
small. Equally clearly, as the layer thickness increases the
reflection response must reduce to that for a single interface,
but at finite thicknesses the multiple reflections internal to
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the slab will modify both the direct reflection response as
well as the head-wave reflection response. Our task is to de-
termine the modifications as functions of slab thickness,
wave frequency, and density and velocity of the slab and
enveloping material. The organization of this paper is as fol-
lows. Section I1I sets up the basic acoustic equations and pro-
vides a formal expression for the total reflected field from a
slab of thickness L immersed in an homogeneous medium.
This is then converted to a far-field asymptotic expression
and the contributions to the direct reflected wave and to the
head wave are identified. The behavior of the reflected wave,
when the slab’s parameters forbid creation of a head wave, is
taken up in Sec. I1I. Section I'V evaluates the far-field asymp-
totic expressions and determines the modification to both
the head-wave critical angle,' and to the head-wave ampli-
tude and arrival time brought about by the internal multiple
reflections in the slab.

Section V considers the contribution to the total reflect-
ed signal when the observation point is located in the vicinity
of the critical angle so that the direct reflection and the head
wave “merge.”’

Section VI explores the variation of amplitude and
phase behaviors for the head wave and direct wave as slab
thickness, frequency, density, and acoustic velocity contrast
between the slab and enveloping media vary. Finally in Sec.
VII we provide a discussion of the results, suggest several
areas of application, and comment on what remains to be
done in order that we may use the results presented here and
earlier.'

Il. BASIC EQUATIONS, NOTATION, AND THE
REFLECTED ACOUSTIC FIELDS

Acoustic waves of angular frequency w are governed by
the equation

pV(p~'Vp) + 0*’p =0, ()
where p is the pressure field and p and s are the position-
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dependent density and slowness. We place smooth boundar-
iesatz = Oand z = L so that p and stake on the values p, and
$; (p,and s,) forz<0andz>L (0<z<L) (see Fig. 1).

We will use the convention of representing a three-di-
mensional vector by lowercase letters and its projection in
the x-y plane by uppercase letters; e.g., a three-dimensional
position vector is written » = (R,z) with R = (x,). Wave
vectors are denoted in a similar fashion. In the medium with
subscript properties 1, a plane wave component satisfying
Eq. (1) has a three-dimensional wave vector (K,k,) with the
Z component

= (%? —K2)12, (2)

The root in Eq. (2) is always taken such that
sgn(z)Im{k,} <0. Likewise, in medium 2, the slab occupy-
ing 0 <z <L, we have the three-dimensional wave vector
(K,k,) with the z component

k,= (0% —K?)'2. (3)

A point source is located on the positive z axis at z,. The
incident field is

Po(r) = de exp(iK-R+zk,|z zy|)

(4a)

=1 f Jo(KR)K [ 'exp(iky|z — z,)|K dK .
0
(4b)

Inspection of Eq. (1) shows that p and the normal derivative
p ™! dp/3n must be continuous across the boundaries z = 0
and z = L. Thus, the reflection coefficient for an incident
plane-wave component of the source field making an angle 6
with the normal to the slab is"’

B(6) =r(6)[1 — expli6(9))]

X [1 — exp(i6(8))r(6)*]7!, (5
where § = 2LK. (1 — a2 sin? 8) /2 with
K. = ws, ,

r(@) = [(1 —a*sin?*8)"* —pcos 8]
X[(1—a*sin?§)"? +pcosf]~!,

P=p/py a=s/s,

K=K08in 0, K0=Sla).

Note that B(8) possesses a branch cut with branch points at
a sin 8 = + 1, which influence the structure of the far-field
response for @ > 1. (The range of integration is only over
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FIG. 1. Sketch of the geometric configuration.
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0<68<7/2 for propagating disturbances in the far field.)
Note also that B(6) contains poles that contribute to the far-
field radiation pattern. These poles occur at the roots of the
transcendental equation

r(6) = + exp(i6(6)/2),

which occur off the real 8 axis. It is known'! that these roots
correspond to the points where the phase of the multiple
along their paths is (27 Xinteger) leading to a significant
far-field contribution to the reflected radiation. As we shall
see later, these multiples produce an analog of the Newton’s
rings effect.

Note further that for @ <1 it is not possible for the
branch cut to contribute to the far-field integral; for a > 1,
however, not only does the branch cut provide a contribu-
tion, but the phase along the branch can exactly match with
the phase along a multiple’s path leading to a comingled
contribution of head wave and multiple. We shall address
this point later. (See Fig. 2.) For later use we note here that
we can also write § in the form

8§=2LKaa [l —a’sin0]'?
=2Lws,(1 —a*sin? 0) V2.
Since (4a) is an integral over plane waves, we have the re-
flected field

P =iJ. KdK expli[K3 — K?]"2|z + 2]}
0

X (K3 — K?)~"2](KR)B(0) . (6)

Definingz. =rcos¢,R =r(sin¢) ™~
(6) in the form

!, we can write Eq.

N
A
\
\ 7/

\

VAV

LI

FIG. 2. Illustrative examples of ray
paths that provide a far-field contri-
bution. Note the presence of the mul-
tiples in the slab and the presence of
the head-wave refraction path (for
a>1).
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P =iK0f dO(sin 6) ~'B(0)
0

X exp{iK,r cos ¢ cos 6}
XJo(Kyr sin ¢ sin 6) (7)

along that path in complex-9 space corresponding to
0<K< . We are interested in propagating disturbances at
large distances from the source. Hence in (7) we can restrict
the range of integration to 0<K<ws, (i.e., 0<0<7/2) and
use the asymptotic representation for the Bessel function

Jo(KR)=~[2/(wKR)]"? cos(KR — 7/4) . (8)

The problem of determining the mapping of such paths
of integration from transverse wave number space K to an-
gular space @ has been intensively investigated over the
years. Kong,'? in his Fig. 6.10 in particular, and in his Chap.
6 overall, provides an elegant treatment of the problem. For
further details concerning the relevant path deformations
and contours of integration in @ space we refer the interested
reader to Ref. 12. We see no need to repeat that information
here.'?

When using (8) in (7), it is simple, but tedious, to show
that stationary points occur only for the component of the
cosine in (8) varying as | exp[i(KR — 7/4)]. Thus, retain-
ing this term in the integral we obtain the asymptotic for-
mula

P =iKy?Q2mrsing) "2~
XJ (sin 0)'2B(0)exp[iK,r cos(8 — ¢)1d6
0

=iK y* (2mr) "% (9)

Evaluation of (9) by the method of steepest descents is then
in line with the asymptotic development of the far field. The
factor (sin #)'/%in (9) is caused by the asymptotic expan-
sion of J,(KR). Thus stationary points near 8 = 0 caused by
this factor are only apparent and we can see from (6) that
actually there are no stationary phase contributions near
6=K=0.

The phase in (9) has a stationary point near 8 = ¢. We
identify this stationary phase point in the usual manner'~® as
providing the directly reflected wave component of the inci-
dent field. Any stationary phase point, say & = 0., arising as
a direct consequence of the square root (1 — a” sin® 6)'/?
becoming pure imaginary in the domain of integration, we
regard as providing the head-wave response. This separation
of direct and head-wave contributions can be maintained as
long as the phase points near 8 = ¢ and 8 = 6. do not co-
alesce to within an angle of order (Kyr) ~# with 8 = 0(1)
(see Ref. 1). At coalescence, the distinction between head
wave and direct wave is moot as the two contributions merge
into one.

Expression (9) provides the basis for the rest of this
paper. As we shall see directly, the reflected wave behavior is
crucially dependent upon whether a(==s,/s,) is greater or
less than unity. To anticipate: for @ > 1 we obtain a head-
wave contribution, for ¢ < 1 we do not, i.e., head waves arise
when a spherical acoustic wave is incident on a high velocity
slab from a low velocity medium.
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lll. STATIONARY PHASE EVALUATION OF THE
REFLECTED WAVE FOR a < 1

Inspection of the structure of B(@) given by Eq. (5)
shows that the square root (1 — a® sin® 8) remains real in
0<6<7/2.

In addition since 7(8) is then less than unity for all p and
a( <1) it follows that B(8) has no poles.

Stationary phase points in the reflected wave integral
(9) can then arise only from the term involving
exp[iN cos(8 — ¢)] (where N=K,r) or from factors in-
volving zeros of 1 — ¢®‘®. Therefore we write the integral I
in Eq. (9) in the form

/2, .
7= J: ( :i: Z )mr(a) [1~ e®®@p(g)y2] !
X exp{iN cos(6 — @) + In[1 — &%®]}d6. (10)

Stationary phase points of the exponential factor in Eq. (10)
occur when
sin(6 — @) [1 — e®®] = (2LK,))%? P /(N6(9)).  (11)

Since 6 > 0 throughout 0<6<#7/2, and since N> 1 because
we are in the asymptotic regime, two different solutions are
available for the stationary phase points.

A. The specular reflection phase point
One phase point of (11) is given approximately by
01 — ¢ + (ZLKO)ZeiG(B) [1 _ ei&(¢)] -1
X[Ns(p)]~'+ O(N~?), (12)

and provides a contribution to the integral (10) in the
amount

I,~B(¢)(2n/N)"? exp[i(N — 7/4)] . (13)

B. The multiple reflection phase points

A second set of stationary phase points of (11) are given
approximately by

6 =0, +i(2LK,)*[Nsin(0, — ¢)2mn] =" + O(N ~?),

(14)
where
nr=[1—a*sin?6,]"2K,L/a, n=1,2,..Npo, ,
(15)
with N_,, given by the nearest integer to, but less than,
E=LK /. (16)

Note that these stationary phase points, which represent the
contribution to the reflected field from multiple “bounces”
off the surfaces of the slab, provide contributions in the far
field only if
min{1,(LKy/m)*}>a*>[1 + (7LK,)?) '=al,,, (17)
representing the fact that multiples produced in the slab
have to have a total travel time in the slab such that they stay
in phase to within a fraction of a wavelength with the pri-
mary spherical wave.

Multiples generated outside of the range of angles al-
lowed by (15)-(17) provide a much smaller contribution to
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the reflected wave in the far field.

We shall assume in writing the far-field stationary phase
expressions that we are dealing with multiple reflections sa-
tisfying (15)-(17). The stationary phase contribution to /
produced by the nth multiple then provides the contribution

I, = (sin 8, /sin ¢)'/?r(6, ) (2LK,)*
X (2m) Y2 [1—1(6,)*] ! [Nsin (6, — )] >
X exp{iN cos(8, — @) + i(2LK,)?

X [2mn sin(6, — $)] ™'}, (18)

where
r(6,) = (nma — pK,oL cos 8,,)/(nma + pK,L cos 8,) .
(19)

In computing the stationary phase point contributions we
have made the implicit assumption that the specular reflec-
tion phase point is distinct in angular position from any of
the multiple reflection phase points by an angle of about
O(N ~'?) in order that we can treat the stationary phase
contributions from each separately.

We now work out the contribution when this is not the
case.

C. Comingled phase points: [0, — ¢| <O(N~1/2)

In the case both factors on the left-hand side of (11)
contribute to the stationary phase point at some particular »
value, say n = m. Then

sin’ ¢ = a=2 — m*7*/(LK,)?, (20)
so that a discrete set of reflection angles exist where a multi-

ple and the primary interfere constructively or destructively.
The comingled stationary phase point is then at

0c=¢+(sin¢)1/2e17r/4N—l/2+0(N—l) (21)

and the comingled stationary phase contribution to the inte-
gral I'is

I = (sin 8)3?r(¢)[1 — r(#)%] ~(cos ¢)"/?

X (LKO)ZN—125/4e—l/2(amﬂ.l/2) -1

Xexp[i(N +37/8)], (22)

where

r(¢) = (amm — pLK, cos ¢)/(amm + pLK, cos ¢) .
(23)

We defer discussion of these contributions to the reflected
wave field until after we have evaluated the similar contribu-
tions arising when the head wave is permitted to exist. Con-
trasting behaviors are then more easily compared and dis-
cussed.

D. Stationary phase points fora = 1

In this case the only difference between the slab and
surrounding medium is due to density contrast. In this case
r(0) = (1 -p)/(1+4+p)=r, and 8 =2LK,cos 8
=A cos 6, so that the integral I in Eq. (9) reduces to
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T=(1+p)(1 —p)~'I

/2
=Jw [1 _eﬂAcosGJ[l __rgeiAcosO]—l
0

X (sin 0 /sin ¢)'/2 exp[iN cos(6 — $)1d0. (24)
Equation (24) has separate stationary phase points at
0, = ¢ + A sin ge =*¢
X [N(1—e2=*)]" '+ O(N~?) (25a)
and at
cos 8, = 2nm/A + iAsin 0 (P [Nsin(0” —¢)] ™!
n=12,..,0..; (25b)

where cos 8 (¥ = 2n7/A and where n,,,, is the nearest in-
teger less than A/27. If A < 27, there are no stationary phase
points from the multiples. When a phase point 8, with
n = m is comingled with 8,, the comingled stationary phase
point is at

O=¢+ (sing) /%™ N2+ O(N ™). (26)

It is then a simple matter to write down the stationary phase
contributions to the integral 7 in (24). From the direct re-
flection phase point 8 = 6, we obtain the contribution

Jo= [1 _eiAcos¢] [l — r(z)eiAcos¢]—l
X(zﬂ,/N)l/zei(N—'rr/At) . (273)

From the nth multiple stationary phase point at = 6,,, we
obtain the contribution

J, = (sin® 8 ©/sin ¢)2A(27) V2 (1 — 2) !
X [Nsin(8 " — ¢)] ~%exp {iN cos(8 > — ¢)
+iAsin@? +in/2}. (27b)

In the event that the mth multiple stationary phase point
comingles with the point near §=4¢, ie., |68 — 4|
<O(N ), we then obtain a comingled contribution

Jo= —singA(w/e)'?[1 — Ze®°=¢] "IN~ (27c)

from the contribution in the vicinity of the stationary point

@(comingled) = ¢ + ¥™*N ~V/? with A cos 8 =2nr.
(28)

IV. STATIONARY PHASE POINT EVALUATION OF THE
REFLECTED WAVEFOR a > 1

In this case a fundamentally different type of behavior
can occur than for the cases @<1. The reason is that the
square-root factor (1 — @ sin? )'/2 not only goes through
zero in the domain 0<0<r/2at0 =0, (sin @, = a™ '), but
its behavior changes from being purely real for 8 < 8, to pure
imaginary for 8> 6,. Thus we have the possibility of produc-
ing a different “character” to the stationary phase contribu-
tions including different coherence properties—the head
wave is the direct consequence of this change in character.>*

We already have an expression in the literature!™ for
the behavior of the head-wave response for the case of a
single interface. We can anticipate here and note that we
expect major modifications to be made to the head wave
when the slab is thin (in the sense LK,<1) for it is under
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such conditions that the phase factor exp[i6(8)] not only
varies slowly but also has a small imaginary partin 6> 6, [a
large imaginary part would reduce B(8) to r(8) within a
small angular range O ((LK,,) ~?) centered on 8 = 6, so that
the head-wave behavior would then be as though from a
single interface].

Hence the dominant modifications to the head wave be-
havior occur for LK,€1 and, accordingly, we restrict our
investigation to the thin slab.

Expanding B(6) in powers of LK, we obtain

B(6)=B,+8,, (29)
with
B, = —iLKy[2ap cos 8] '[1 — a’sin* § — p* cos® 9 ]
X exp(iLK, p cos 6) (30)
and
B,= —2iLK,a~'(1 — a*sin® 8)'/2B,(8) + O((LK,)?),
31)

where B, is the lowest power in LK, that contains the square-
root factor. Following a conventional format'~> we identify
B, as providing the directly reflected wave behavior and the
stationary phase point in B, near = 6, as contributing to
the head-wave behavior. Other stationary phase contribu-
tions from B, we regard as providing modifications to direct
wave brought about by the existence of the head wave.> The
asymptotic integral 7 in Eq. (9) then also splits into two
parts, I = I, + I, with

/2 f o 1/2
I, = —iLKo(Zap)_‘f (sf"e)
o sin ¢
X (cos 8) ~'(1 — @ sin? § — p* cos® 6)

Xexp[iN cos(8 — ¢) +iLK,pcos 8 ]1d8, (32)
and
/2 : 172
L=— (LKO)Z(zpaz)—‘J (sf"e)
o sin ¢

X (cos 8) ~1(1 — a®sin? ) '/?
X (1 — a*sin? @ — p* cos® )
X exp[iN cos(8 — @) + iLKyp,cos 8 1d6 . (33)

The integral I, has a stationary phase point at f~¢ yielding
the contribution

I~ — iLKo(2ap) ~'(27/N)?(sec $)*/
X (1 —a®+ (a® — p*)cos’ ¢)
Xexp[i(N+ LKy,pcos ¢ —7/4)] . (34)

The integral I, has two stationary phase points, one in the
vicinity of = ¢, which we regard as contributing to the
direct wave, the other in the vicinity of 8 = 6, which we
regard as giving rise to the head-wave behavior. For the mo-
ment we deal with the phase points as separate, not comin-

gled.

A. Contribution to the direct wave

Inspection of Eq. (32) and (33) shows that the direct
wave contribution from I, is of order (LK) smaller than
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that arising from I,. Hence we can ignore the stationary
phase point contribution in I, from the vicinity of 6 = 4.

The contribution to I provided by the stationary phase
point in I, is then about

Idirectz - iLKo(zap)—l sec ¢(27T/N)1/2
X(1 — a? + (a® — p*)cos? @)

Xexp[i(N+ LKypcosd)] . (35)

B. Contribution to the head wave

Following a procedure similar to one laid down else-
where,'? we rewrite I, in the form

/2 (o 172
1= — LKy sing,0p)7" [ (220
o sin ¢
Xsec 0 (1 — a? + (a* — p*)cos® 9)

X exp{iN cos(8 — ¢) + 4 In[sin 6, — sin® 8 ]}d6 .
(36)

The exponential in (36) has a head-wave stationary phase
point at

66, + i2N sin(6, — ¢))~", (37)
which yields the head-wave contribution from 7, of
Lo~ (LK)*(sin® 6, /sin ¢)"/%p cos 8,
X (m/(8€))/*[ N |sin(6, — #)|] ™"
X exp{i[N cos(6, — ¢) + LK,pcos 6,1}, (38a)

and, following standard procedure,'~ we have evaluated the
head-wave contribution only in the regime ¢ > 8,, since it is
only for large angles that the reflected head wave arrives at a
receiver prior to the direct wave. In terms of the convention-
al notation® using the head-wave travel time

Ty =5y cos(6, — @)

and the distance / [=rsin(6, — ¢)] that the head wave
travels through the medium with slowness s, (see Fig. 6.10
of Ref. 3), we can use Egs. (9) and (38) to write the head-
wave pressure field in the form

Ph = (.1)1/2"_1/2 LzKi (&)(1 —i)a/z
- e 4K 1% \p, 5

Xexplio(r, +s,Lcos8. —1)], (38b)

so that, as well as having its amplitude cut down by the inter-
ference between the upper and lower bedding planes, the
head wave is also delayed by the extra amount s,L cos 6,
relative to head-wave arrivals from a single interface.

C. Comingled stationary phase points:
|6 —6.|<ON—12)

In this case the direct wave stationary phase point at
6 = ¢ + O(N ~') combines with the head-wave phase point
to yield a single, comingled, stationary phase point at

8= ec + eivr/4(2N)—l/2 ,
which provides a contribution to /, in the amount
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I omingtea ~<ip (LK )*(sin 6, cos 8,)**(3 w/e)'’N —3/4
Xexp[i{(N+ LKypcosb,.)] . (39)

Having explored the basic mathematical contributions to the
reflected wave behavior we now turn our attention to an
assessment of their relative behaviors.

V. REFLECTED WAVE BEHAVIOR FOR as1

A. The case a < 1 (low velocity slab, high velocity
medium)

The relative contributions to the integral J in Eq. (9)
arise from the direct wave (stationary phase point near
6 = ¢) as given through Eq. (13) and from the multiples
generated in the slab as given through Eq. (18) [stationary
phase points near 6 =0, provided inequality (17) is
obeyed].

Apart from factors of order unity, the relative magni-
tudes of the separated (not comingled) multiple contribu-
tions relative to the direct wave have the large N behavior
|I,|/|I,] = O(N ~3/2) so that, in the far field, the multiples
are always a very small contribution. When comingled, the
mth multiple plus direct wave has magnitude |I,,|/|I,|

= O(N ~V?) so that the direct wave is diminished by
O(N ~—"?) in amplitude by interference with the mth multi-
ple.

The multiple contributions [Z, = O(N ~?)] to the far
field are so small because of the curvature of the incident
spherical wave. Unlike a single plane-wave incident at a
fixed angle on the slab, the spherical wave consists of a super-
position of plane waves. The usual plane-wave phase coher-
ence of the reflected multiples is diminished by the superpo-
sition effect of the spherical wave. The individual plane wave
contributions rapidly become phase incoherent, one with re-
spect to another, thereby destructively interfering to dimin-
ish the multiples’ far-field contribution.

Unless a multiple comingles in phase with the direct
wave, its far-field behavior is minute compared to the direct
wave.

At the specific angles 8,, = ¢ the joint contribution of
the direct wave and mth multiple is smaller than the direct
wave so that dark bands, of intensity O(N ~'/2) compared to
the direct wave at angles away from 8,, = ¢, will be present
in the far-field radiation pattern—an analog to Newton’s
rings. [ Newton’s rings are caused by interference of the re-
flected primary waves from the two interfaces of a wedge
(varying thickness). In this sense B(¢) itself is directly anal-
ogous to Newton’s rings. ]

These bands narrow as distance increases, and there are
a finite number n_,, of them, with n_,, given through Eqgs.
(15) and (16), provided further that inequality (17) is in
force.

If a steps out of the bounds allowed by Eq. (17) or if, for
a given a, the wave number K, or slab thickness L are such
that inequality (17) is violated, then there are no far-field
multiple contributions. The far-field pattern is then due to
the direct contribution B(#). Reflection of a spherical wave
from the slab behaves as it would from a plane wave (apart
from a divergence factor 7~ ). The thickness would modify
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the amplitude as a function of offset as if the source were a
plane wave.

B. The case u = 1(equal velocities for slab and medium)

Here the far-field behavior is essentially identical in
character to that for @ < 1. Again there is a direct wave con-
tribution [Eq. (27a) ], multiple contributions [Eq. (27b)],
which are of order N ~3/2 compared to the direct wave, and a
comingled contribution [Eq. (27¢)] of order N ~'/2 com-
pared to the direct wave so that, once again, dark angular
bands of width O(N ~'/2) centered on ¢ = ,, will be present
in the reflected wave’s angular intensity. In this case the dark
zones occur at angular positions where ¢ = cos™'(nn/
LK), which is the limiting case for satisfaction of inequality
(17).

C. The case a > 1 (high velocity slab, low velocity
medium)

In this case we restricted our attention to the case of a
thin slab LK, <1 since we wished to concentrate on the head-
wave behavior as modified by the slab nature of the medium.

In terms of intensity, the relative contributions to the
integral 7 from the head wave [Eq. (38)] and the direct
wave [Eq. (35)] are in the ratio LK,/N /2 apart from fac-
tors of order unity (for comparison, in the case of a single
interface the ratio is of order’~N ~'/?). Thus the effect of a
thin slab is to diminish the head wave amplitude by a factor
O(LK,) relative to the direct wave, and to diminish the
head-wave amplitude by a factor O ((LK,)?) relative to the
head wave from a single interface.

From Eq. (38) we see that the usual propagation
aspects of the head wave are maintained'™: it arrives ahead
of the direct wave for large offset angles 8, and the head-
wave arrival time is independent of frequency (nondisper-
sive). An “extra” time delay, s,L cos 8., now arises because
of wave interference at the bedding plane boundaries of the
slab. The factor (LK,)? in the amplitude and the term
5,L cos 6, in the phase are consequences of the assumption
that LK;,<1. When LK~ 1 the derivation fails. Of course
then the various reflections separate out temporally.

In the case of a comingled direct wave and head wave,
Eq. (39) shows that the joint amplitude varies as O(LK )%/
N34 over an angular range O(N ~'/?) centered on 8, = ¢.

VI. DISCUSSION AND CONCLUSION

The purpose of this paper was to see what modifications
were introduced to reflection of a spherical acoustic wave
that impacted on a slab of finite thickness compared to im-
paction on a single interface.

We found that the dominant effect, irrespective of the
relative contrast in density or velocity, was for a thin slab to
cut down the total reflected wave by amounts of order
LK, (<1) for the direct wave and of order (LK,)? for head
waves relative to single interface results. We also found that
the existence of multiples, caused by reflections of the inci-
dent spherical wave off the top and bottom surfaces of the
slab, has the effect of introducing narrow, angular bands of
darkness into the reflected field.

N. C. Banik and I. Lerche 1699



In the case where a low velocity slab is surrounded by a
high velocity medium, these bands are dispersive in frequen-
cy, exist only in restricted frequency bands (for a given ve-
locity contrast and given slab thickness), and become nar-
rower in angle as the observation point moves further and
further away from the slab. The direct wave dominates un-
der all such conditions.

In the opposite case, where a high velocity slab is sur-
rounded by a low velocity medium, we found that the head
wave still has its single interface propagation characteristics
(e.g., arrives ahead of the direct wave for observation angles
greater than §,, is nondispersive in frequency), but that its
amplitude is not only smaller than that from a single inter-
face but also has a different frequency dependence, so that
the temporal structure of the head wave is changed. The
direct wave, while also weakened, is still more dominant in
intensity than the head wave. There is also an extra time
delay for the head wave due to the finite thickness of the slab
in the amount Ar = s,L cos 6,.

In order to improve our understanding of the behavior
of head waves in the subsurface of the earth (so that we can
better use them as diagnostic devices for determining subsur-
face structure) we still need to investigate the behavior of a
spherical acoustic source impacting on one or more inter-
faces (flat, rough, curved) when due allowance is made for
conversion of part of the incident wave to shear waves® at the
boundaries between the different media.

These problems will be taken up in future papers in this
series.
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A layer-stripping procedure for solving three-dimensional Schrédinger equation inverse
scattering problems is developed. This method operates by recursively reconstructing the
potential from the jump in the scattered field at the wave front, and then using the reconstructed
potential to propagate the wave front and the scattered field further into the inhomogeneous
region. It is thus a generalization of algorithms that have been developed for one-dimensional
inverse scattering problems. Although the procedure has not yet been numerically tested, the
corresponding one-dimensional algorithms have performed well on synthetic data. The
procedure is applied to a two-dimensional inverse seismic problem. Connections between
simplifications of this method and Born approximation inverse scattering methods are also noted.

I. INTRODUCTION

The inverse scattering problem for the Schrodinger
equation in three dimensions with a time-independent, local,
nonspherically symmetric potential has a wide variety of ap-
plications. In particular, the inverse seismic problem of re-
constructing the density and wave speed of an inhomogen-
eous isotropic acoustic medium from surface measurements
of the medium reponse to an excitation can be formulated as
a Schrodinger inverse scattering problem, as was done by
Coen et al.! The plasma wave equation, which describes the
propagation of electromagnetic waves in the ionosphere, is
also related to the Schridinger equation by a Fourier trans-
formation with respect to time. Some connections between
inverse scattering problems for the Schriodinger equations
and for the plasma wave equation have been noted by Rose ef
al?

Two major approaches for solving Schrodinger inverse
scattering problems in dimensions greater than ! are avail-
able. The first approach consists of using the first Born ap-
proximation, in which the wave field inside the inhomogen-
eous region (where the potential differs from zero) is
approximated by the incident wave being used to probe the
region. This approach has been applied to the inhomogen-
eous wave equation by Cohen and Bleistein,® Devaney,* and
others. The second approach is the generalized Marchenko
procedure due to Newton,” in which the wave field is recon-
structed inside the inhomogeneous region by solving a Mar-
chenko integral equation for each direction of the incident
probing. The potential is then recovered by an equation com-
monly referred to as the “miracle” [Eq. (2.11) below].

Both of these methods have shortcomings. The Born
approximation constitutes a single scattering approxima-
tion, and thus requires the assumption of weak scattering.
Newton’s integral equation method avoids this problem, but
requires the scattering amplitude (measured in the far field)
for all incident and outgoing directions and all frequencies.
This results in an overdetermined problem, where a slight
corruption of the data may result in an inadmissible scatter-
ing amplitude. Also, the transmission data required for com-
plete characterization of the scattering amplitude is general-
ly unavailable in inverse seismic problems, since only surface
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measurements (in the near field) are available. Finally, the
necessity of computing the entire wave field for each incident
direction of probing is clearly inefficient, since the form of
the “miracle” equation shows that much of this calculation
is redundant.

In this paper a third approach to Schridinger inverse
scattering problems is discussed. A layer-stripping proce-
dure is derived, which recursively reconstructs the wave
field and the potential simultaneously. To see how this pro-
cedure works, consider the plasma wave equation [Eq. (2.5)
below]. As the probing wave penetrates the inhomogeneous
region, the jump in the wave field at the wave front yields the
potential along the wave front. This was first noted by
Morawetz,® and is called the “fundamental identity” by De-
Facio and Rose.” However, the reconstructed potential now
can be used to propagate the wave field deeper into the inho-
mogeneous region, and the jump in the wave field at the new
position of the wave front yields the potential along this new
position. In this way, the potential for the entire inhomogen-
eous region is reconstructed recursively, rather than in one
huge batch operation as with the “miracle” equation.

There are several advantages to using a layer-stripping
technique. Only one direction of probing is required, and
only backscattered data is used. This makes the procedure
more applicable to inverse seismic problems, and also re-
moves the problems of overdetermination and possibly in-
consistent data. The procedure is in principle exact, since all
multiple reflection, refraction, and diffraction effects are ac-
counted for. Approximation is inherent only in the discreti-
zation necessary to implement the algorithm numerically,
and data at all frequencies are used. Finally, the algorithm
requires less computation than would the solution of New-
ton’s Marchenko integral equation for even one incident di-
rection, if this were possible [note that the coupling of p, in
Eq. (2.8) below precludes this possibility]. This is because
the layer-stripping procedure exploits the structure of the
inverse scattering problem itself. This structure is manifest-
ed as the Hankel structure of the Marchenko integral equa-
tion, which can be exploited to reduce the amount of compu-
tation required to solve it. However, it should be noted that
Newton’s procedure allows bound states (square-integrable
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solutions with negative energy), whereas the applicability of
layer stripping to problems with bound states is still unset-
tled.

The layer-stripping concept has been used to obtain fast
algorithm solutions for the one-dimensional Schrodinger in-
verse scattering problem by Corones ef al.,® Symes,® Bruck-
stein et al.,'® and Yagle and Levy."! This approach has also
been applied to various inverse seismic problems by Bube
and Burridge'? and Yagle and Levy.'>"® Similar approaches
have been used by other authors. Results of computer runs of
these algorithms have been encouraging (see Bube and Bur-
ridge'? and Yagle'®). Previous application of this concept to
multidimensional inverse seismic problems has been limited
to Yagle'S and Symes. "’

It should be noted that the algorithms proposed in this
paper have not yet been numerically tested, and their nu-
merical stability is presently unknown. However, the perfor-
mance of the one-dimensional problem algorithms is encour-
aging. In any event, the insight gained into the inversion
process is interesting in its own right. '

The structure of this paper is as follows. In Sec. II New-
ton’s integral equation procedure, including the “miracle,”
is quickly reviewed and interpreted using results from Rose
et al.>'® This allows relationships between this approach and
the layer-stripping approach to be noted later. In Sec. III a
layer-stripping procedure for solving the three-dimensional
Schrodinger inverse scattering problem is derived and dis-
cussed. In Sec. IV this algorithm is applied to the 2}-dimen-
sional inverse acoustic problem with a harmonic source,
which was considered by Coen et al.! This results in a solu-
tion procedure requiring only surface data, in contrast to the
procedure of Coen et al.,' which requires transmission data
that are difficult to obtain for an inverse seismic problem. In
Sec. V some Born approximation results are quickly re-
viewed and are then related to a simplification of the layer-
stripping algorithm. Section VI concludes the paper with a
discussion and summary of results.

Il. INTEGRAL EQUATION METHODS

The inverse scattering problem considered in this paper
is as follows. The wave field p(x,k) satisfies the Schrodinger
equation

(V2 + k2 — V(x))p(x,k) =0, (2.1

where the potential V(x) is real valued, smooth, and has
compact support. It is also assumed that V'(x) does not in-
duce bound states; a sufficient condition for this is for V' (x)
to be non-negative.

Scattering solutions of Eq. (2.1) are given by the Lipp-
man~Schwinger equation

ﬁ(x;k;e,) =e—|'ke,--x _J‘ (41r|x_yl)—le—-l'k|x——y|
X V(y)p(y.k:e;)d’y, (2.2)

where the incident wave is a plane wave in the direction of
the unit vector e;. Letting x = |x|e, and taking |x|— 0, we
have, in the far field,
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hex (e~ ik Xl /47|x|)A4 (k,e,e;)

+ 0(]x| %),

Plx;ke) =e”

(2.3)
where

A(ke,e)2 —fe_ih"yV(y)ﬁ(y,k;e,)d3y (2.4)

is the scattering amplitude for incident direction e; and scat-
tered direction e,.

Taking the inverse Fourier transform of Bq. (2.1) with
respect to k yields the plasma wave equation

v? g’ | 4
—?— (x) Ip(x,t) =0, (2.5)
where
p(x1) = 7’— f POxK)e dk, (2.6)
TJow

Equation (2.5) models the propagation of electromagnetic
waves in the ionosphere, as noted by DeFacio and Rose’; in
two dimensions, it can also be interpreted as the equation for
an elastically braced membrane. The inverse Fourier trans-
form of Eq. (2.3) is

p(x,t;e) =8(t—e; *x) + (4r|x|) "'R(z — e, * x,e,,€,)
+ O(|x|™2), (2.7)

where R(te,,e;) is the inverse Fourier transform of
A(k,e,,e;) and therefore represents the observed time re-
sponse to the probing impulsive plane wave §(¢ — ¢, * x) in
the far field. As an alternative, of course, the near-field re-
sponse could be measured. So far, we have followed Rose er
al?

Newton’s procedure’ for recovering the potential ¥(x)
from the scattering amplitude 4 (k,e, e, ) is as follows. First,
solve the Marchenko integral equation [ Eq. (4.19) of Rose et
al?]

ps(x,5e) = f f M(t + 7.e,.¢,)p, (x,7,e,)dr d e,
$2J —e,*x

+ | M(t—e, -x.e,e)d%, (2.8)
sZ
for the scattered field p, (x,t;e; ), which is simply
D (x,t;e,) =p(x,t;e;) —6(t — e, * X), (2.9)

and where S denotes the unit sphere in R®.
The quantity M(t,e,,e;) is obtained from 4 (k,e,,e;) us-
ing

Mte,e) = ——=2 R(te.e.), (2.10)

87 Jt
where R(-) is the inverse Fourier transform of 4(.). Here
the work of Rose et al.2 has been used to interpret the various
quantities in the integral equation (2.8). The potential V'(x)
is then recovered from the scattered field using the “miracle”
equation

V(x) = —2e,*Vp,(x,t=¢;°x*;e;). (2.11)
Two comments are in order here. First, note the Hankel

structure of the kernel in Eq. (2.8), which follows since
M(-) is a function not of x and ¢ separately, but only of the
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delay ¢ — e, * x. This suggests that a fast algorithm solution
of either the integral equation or the inverse problem itself is
possible. Such an algorithm would take advantage of the
structure represented by the Hankel kernel to reduce the
order of the number of computations required. This is well
established in the one-dimensional case (see Bruckstein et
al.'° and Yagle'®). Second, note the redundancy involved in
the use of the “miracle” equation (2.11). Newton® notes that
the right side of Eq. (2.11) characterizes admissible scatter-
ing amplitudes: only a subset of all possible 4 (k,e,,e;) (five
independent variables) can result from all possible ¥(x)
(three independent variables). Even apart from issues of ill-
posedness and overdetermination, it is clear that recon-
structing the scattered field for each incident direction e,
involves a large amount of unnecessary computation for the
purpose of reconstructing V(x).

The reason all of this computation is necessary is made
clear by Rose et al.'® The derivations of Newton’s integral
equation procedure by Newton® and Rose et al.,? while
mathematically rigorous, shed little insight into what is ac-
tually occurring during the inversion procedure. However,
Rose et al.'® show that Newton’s Marchenko integral equa-
tion (2.8) is a direct consequence of the representation
theorem

p(x,t) =J‘ d3x’f dt’[p(x',t') 96 (x,x,t—t')
as — an

—Gxxi—1) L (x’,t’)]. (2.12)
on
This result, which is a consequence of Green’s theorem,
shows that if a wave field p(x,f) and its normal derivative
dp/dn are known on a closed, simply connected smooth sur-
face S, then the wave field in the interior of 45 can be recon-
structed if the Green’s function G(x,x',¢) is known on dS.
Insertion of Eq. (2.7) and the inverse Fourier transform
of Eq. (2.2) into Eq. (2.12) and its time reversal yields the
Marchenko integral equation (2.8) (see Rose et al.'® for
details). This shows that the excessive computation required
by the solution of the integral equation (2.8) is a conse-
quence of the implicit use of the representation theorem
(2.12) and its time reversal [the latter accounts for the cou-
pling between various p, (-,+;¢;) ]. Reducing the amount of
computation requires that another means of reconstructing
the wave field be found. This is done in the next section.

IN. A LAYER-STRIPPING RECONSTRUCTION
PROCEDURE

The problem with using the representation theorem
(2.12) to reconstruct the wave field is that this integral does
not take advantage of the fact that the wave field arises from
a scattering experiment. As the probing impulse
6(t — e, *x) penetrates the inhomogeneous region where
V(x) differs from zero, it is possible to differentially recon-
struct the scattered field. Of course, knowledge of V(x) is
necessary to accomplish this. However, it is not necessary to
know V(x) for all x, but only for x in the region where the
scattered field is being reconstructed: the wave front. And
V(x) can be obtained from the jump in the scattered field
itself at the wave front.
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For convenience, we choose coordinates (x, y,z) such
that the direction of the probing impulsive plane wave is in
the direction of increasing z, the inhomogeneous region lies
in the half-space z > 0, and the plane wave passes through the
origin at £=0. Specification of the backscattered field
P(x,»z2=0k) and/or its inverse Fourier transform
2(x, y,z = 0,t), together with a radiation condition for large
|x| in the half-space z > 0, constitutes boundary conditions
for the inverse potential problem for the Schrédinger equa-
tion (2.1) and the plasma wave equation (2.5). The experi-
ment geometry is illustrated in Fig. 1.

The plasma wave equation (2.5) may be written as the
coupled system

d, 9 A
( az+ at)p(x,yz,t)_q(x,y,z,t), (3.1a)
(2-2)ats9a0
dz ot T
ar 32
=(V(x,y,2)——ax2———a )p(x,y,z,t)- (3.1b)

From causality and the form of Eq. (3.1a), p and ¢ have the
forms

p=06(t—2z) +p(x,yz,t)1(t —2), (3.2a)
qg=q(x,yz,t)1(t — z), (3.2b)

where p and g are the smooth parts of p and g, respectively,
and 1(-) is the unit step or Heaviside function.
Inserting Eq. (3.2) into Eq. (3.1) yields

(% + g;)i’(x, yzt) =q(x, p,z,t), (3.38)
da ad\.
(E - 5) q(x, y,z,t)
a? 4%\,
- (V(x, yay -2 a_yz) 56y, (3.3b)
Vix,yz) = —2q(x, pzt =2z"), (3.3c)

where equating the coefficients of §(¢ — z) in Eq. (3.1b) has
been used to obtain Eq. (3.3c). Equations (3.3) suggest a
recursive procedure for reconstructing V(x): Starting with
known p(x, y,0,¢) and §(x, ,0,2), Eq. (3.3) may be propa-
gated recursively in z, yielding ¥ (x) recursively in z as the
algorithm progresses.

incident plane
wave front

FIG. 1. Setup of the inverse scattering problem, which is solved by a layer-
stripping algorithm.
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The reconstruction of F(x) takes place along the
wave front, with V(x) being obtained from the jump
g(x, y,z,t = z*) in the wave field at the wave front. In this
way both the wave field p and potential ¥ (x) are recon-
structed recursively and simultaneously as the impulsive
probing plane wave passes through the inhomogeneous re-
gion. This is in contrast to Newton’s procedure, described in
Sec. II, in which the entire wave field is reconstructed by
solving the Marchenko integral equation (2.8), and the po-
tential ¥(x) obtained in one big batch operation using the
“miracle,” Eq. (2.11). Note that the crucial physical princi-
ple allowing this simplification of the reconstruction proce-
dure is causality, which is manifested in Eqgs. (3.2).

The two second-order partial derivatives in Eq. (3.3b)
will create high-frequency error problems when Eqs. (3.3)
are implemented numerically. These partial derivatives may
be eliminated by taking Fourier transforms of Egs. (3.3)
with respect to x and y, yielding

ad a\ » 2
9 L 9N\ Bk k. z,t) = Gk, K, 2,0),
(az+at)p(‘ y2l) = 4Rk, 1)

(5‘9; - -g;) Bk kyz,t) = (K2 + kDB (ks Ky 2,0)

(3.4a)

+ Vik, k, 2)#xp(ky K, 2,8),
(3.4b)
Vik,k,2) = —2q(k. .k, .zt =z"), (3.4c)
where the *» indicates a convolution operation in k, and k,,.
Equations (3.4) are more suitable for numerical implemen-
tation; on the other hand, Fourier transforms with respect to
x and y must now be performed on the data, and inverse
Fourier transforms performed on V(%, ,k,,2). Note that the
second-order partial derivatives with respect to x and y ap-
pearing in Eq. (3.3b) have now been replaced by the filter
k2 + k2. Since this filter becomes infinite for high wave-
number values, to implement it, we should clip the high
wave-number components, i.e., we should use H, (k,,k,)
=k2 +k2for (k2 +k2)"*<L,andH, (k,,k,) =0oth-
erwise. Here L is a parameter that determines the degree of
smoothing that is applied to the reconstructed potential
V(x, y,z). The idea of using a clipped filter of this type was
first proposed by Shepp and Logan to implement the filtered
backprojection algorithm for the inverse Radon transform.
The use of this filter may improve the stability of this algo-
rithm relative to the stability of solving the mixed system
(3.3). Note indeed that the system (3.3) corresponds to
solving an initial value problem for a mixed partial differen-
tial equation, which is likely to be ill posed. By comparison,
we expect that the introduction of the filter A, (k,, k,) in
Eq. (3.4b) will have the effect of regularizing this problem,
since H; (k,, k,) will smooth the variations of the potential
V(x, y,z) in the lateral directions x and y, when the medium
is probed by a plane wave propagating in the z direction.
Ifk,, k,, z, and ¢ are discretized to integer multiples of
A, with the integers varying over the interval [0,N], then a
forward difference approximation to the partial derivatives
in Eq. (3.4) yields

Pz + D2+ Ak, k)

=p(ztk k) + a(ztk, k) A, (3.5a)
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g(z+ At — Ak, k)
=q(ztk,k,) + (k2 + k2)p(zrk, k,)A

+3 3 Wk,
Xp(z,t,mA,mA)A, (3.5b)
Vikyk,z+A) = —24(k, .k, Z+Ar=z+8). (350)

The recursion patterns inzand ¢ for p and § q areillustrated in
Figs. 2(a) and 2(b). We start off knowing p and g q atz for all
k., k,,and t, and we wish to update themtoz + Aforall k,,
k,, and . Although the forms of the recursions may make it
seem as though some information is being lost, recall that by
causality p and g are both zero for f <z. Note that O(N %)
multiplications-and-adds must be performed at each recur-
sion, so that a total of O(N ®) operations are necessary to
reconstruct V(x). However, solution of the discretized Mar-
chenko integral equation (2.8) requires the inversion of an
N3x N3 matrix in z and e; [O(N ®) operations by Gaussian
elimination ] for each x, for a total of O(V '2) operations! The
numerically unstable gradient in Eq. (2.11) is also necessary
for this method.

Equation (3.3c), which allows the recovery of ¥(x)
along the wave front from the jump in the scattered field
there, is equivalent to the ‘“fundamental identity”

V(x) = —e, - VB(x,e;) (3.6)

of Rose et al.? and DeFacio and Rose.” In Eq. (3.6), which
was first noted by Morawetz,® B(x,e;) is the jump in the
scattered field when the wave front passes through x. Equa-
tion (3.6) is obtained by inserting the “progressing wave
expansion”

p(x,te,) =6(t—e; *x) + B(x,e,)1(t —e; *X)

—mAk, —nAz)

3.7

into the plasma wave equation (2.5). Here C(x,te;) is
smooth and zero for ¢ < e; * x. Note that Eq. (3.6) is in turn
equivalent to the “miracle,” Eq. (2.11). However, it does
not seem to have been recognized previously that Eq. (3.6)
can be used not only to reconstruct the potential from the
scattered field, but also to help and propagate the scattered
field itself. The decomposition (3.1) of the plasma wave
equation makes this possible by isolating  (x, y,z,¢), which is
exactly the quantity needed to recover ¥(x) by Eq. (3.3¢c).

+ C(x’t;ei)

%(zo) a'(z°+A)

4 A
ta  Pl2o) plzo+A) e
(@ (b)
L ,/.rslope=|
"\slope=l <’
N = -
= & ~o-slope=
[ 1
[ 1!
1] 3 11 —»2
o] Zy Zo+A o] Z, 2,4

FIG. 2. (a) Recursion pattern for updating p(z,6,k,.k,). (b) Recursion
pattern for updating §(z,t,k, k).
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[Note from Eq. (3.7) that (3 /dt)p(x, y,2,t =z) =0in Eq.
(3.3a).] The iterative methods of Morawetz® and DeFacio
and Rose’ used Eq. (3.6), but did not propagate the scat-
tered field.

A decomposition of the Schridinger equation into a
coupled first-order system similar to Eq. (3.4) was per-
formed by Wilcox!® in the context of invariant imbedding. It
should be evident that a layer-stripping procedure can also
be interpreted as an invariant imbedding procedure. In fact,
the one-dimensional layer-stripping algorithm obtained by
Corones et al.® was derived from an invariant imbedding
point of view. However, Wilcox’s coupled first-order sys-
tem'® was only used to solve the forward problem of comput-
ing the wave field from a known potential. It is also more
complex than Eq. (3.4), since it requires twice as many con-
volutions for a three-dimensional problem.

In the next section, the layer-stripping method is ap-
plied to an inverse seismic problem, illustrating some of its
advantages over present methods of solving this problem.

IV. APPLICATION TO AN INVERSE SEISMIC PROBLEM

The inverse seismic problem considered in this section is
that of reconstructing the density p(x,z) and wave speed
¢(x,z) of an acoustic medium from measurement of the re-
sponse of the medium to a harmonic line source. We follow
Coen et al.! in transforming this problem into a two-dimen-
sional Schrédinger equation inverse scattering problem,
which is then solved using the layer-stripping algorithm of
Sec. II1. By performing the experiment twice, at two differ-
ent source frequencies w, and w,, two different potentials
V(x;w,) and V(x;w,) are reconstructed, and the density and
wave speed are in turn recovered from the two potentials.
The one-dimensional version of this procedure was given in
Yagle and Levy.'’

The use of a layer-stripping algorithm implies that the
amount of computation required to reconstruct p(x,z) and
¢(x,z) will be less than that required by the integral equation
procedure of Coen et al.' More importantly, only surface
measurements in the near field are required to initialize the
algorithm. This is in contrast to the procedure of Coen et
al.,! which requires transmission data (generally not avail-
able for an inverse seismic problem) and a transformation
from near-field data to far-field data.

The specifics of the inverse problem are as follows. An
inhomogeneous acoustic medium characterized by smooth
density p(x,z) and wave speed c(x,z) functions is contained
in the half-space z> 0 and bounded by a free (pressure-re-
lease) surface at z = 0. This medium is probed with cylindri-
cal harmonic waves from a harmonic line source extending
along the x axis. The strength of this source varies as
p(x,z=0)"2 see Eq. (4.7a). The vertical acceleration re-
sponsed, (x, y,z = 0) of the medium at the free surface in the
sinusoidal steady state is measured for all x and y. The situa-
tion is illustrated in Fig. 3. It is assumed that the medium is
homogeneous in the y direction [i.e., p =p(x,z) and
¢ = c(x,z)], and that the inhomogeneous region has com-
pact support (i.e., p = p, and ¢ = c, for sufficiently large |x|
and z). It is further assumed that p,, ¢,, and p(x,z = 0) are
known, and that dp/9z(x,z = 0) = 0. In addition, it is as-
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free
surface

FIG. 3. Setup for the inverse seismic problem, which is solved by a layer-
stripping algorithm.

sumed that there are no bound states, a sufficient condition
for this is ¢,<c(x,z) (see Coen et al.).

The basic linear equations that describe an acoustic me-
dium are

a%p
P —pc®V . a, (4.1a)
Vp = —pa, (4.1b)

where p is the pressure and a the medium acceleration.
Taking Fourier transforms of Eqs. (4.1) with respect to
time and defining

P(x0) =p(x,0)/p(x)"7?, (42)
results in the equation
(V2 + 0*/c2 — V(x;0) 1 (x;0) =0, (4.3)

where the potential V(x;w) has compact support, is inde-
pendent of y, and is given by

Vixw) = (0/c2)(1 — 2 /e(x)?)
+p(x) 2V p(x)~17). (4.4)

Following Coen et al.! and Yagle and Levy,'® the Four-
ier transform of Eq. (4.3) with respect to y is taken, resulting
in the Schrédinger equation

a 2 2 a
(ﬁ + i V(x,z;m)up(x,z,k;w) =0, (45)
where

k*=w?/ct —k:=kZ+k? (4.6)
is the sum of the squares of the lateral wave number &k, and

vertical wave number k,. The boundary conditions for the
Schridinger equation (4.5) are obtained from

B(x, .z =00) =p(x,z=0)""?5(p), (4.7a)
P(x, 3,2 =00) =56(), (4.75)
ap o

L - _pa,, 47
% pa (4.7¢)

which lead to

P(xz=0kw) =1, (4.8a)
—3{-= —p(x,z=0)”25, (x,z =0,k;@). (4.8b)

Note that it has been assumed that the strength of the har-
monic line source varies as p(x,z=0)"? and
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(8/3z)p(x,z=0) =0. These assumptions simplify the
form of the algorithm, although they are not gssentlal In
addition, a radiation condition is imposed on ¢ and &, for
large |x|, |y|, and z.

Note that a,(x,z=0,k;0) may be obtained from
a,(x,y,2 =0;w) only for k on the positive imaginary axis
and on the positive real axis in the interval [0, w/c,]; this
region is itlustrated in Fig. 4. Numerical results in Yagle and
Levy'® and Stickler® for the one-dimensional problem sug-
gest that the absence of data for k> /¢, should have little
effect on the quality of the reconstructed medium param-
eters. This is due to the fact that data for all k are used to
determine these parameters [see Eq. (4.15)], so the lack of
data for large k will merely result in a loss of resolution. If
this is acceptable, then @, (x,z = 0,k;w) for k> w/c, may be
set equal to zero in the sequel. An alternative is to analytical-
Iy continue a, (x,z = 0,k;w) for k > w/c, using a theorem of
Van Winter?! that employs the Mellin transform. This was
noted by Coen et al.,' Yagle and Levy,' and Stickler®.

The layer stripping algorithm for solving this problem is
as follows. An inverse Fourier transform of Eq. (4.5) that
takes k into the fictitious depth coordinates { [recall X is a
wave number; see Eq. (4.6)] results in the plasma wave
equation

2 2 2

T A A
arr  ox* ¥

which can be written as the coupled first-order system

V(x,z,w)):/»(x,z,;,w) —0, (49)

(" ;;) (x2.£0) = p(xz L), (4.10)
(é- - —) d(x,2,5;0)
dz
2

= (V(x,Z;w) - ;;-%) Y(x,z,6;0), (4.10b)
with the initial conditions [from Eq. (4.8)]

Y(xz =040) =6(4), (4.11a)

$(xz=0%w) = —p(xz=0)"%a,(xz=05w).

(4.11b)

The form of Egs. (4.10) makes it clear that the impulse in
Eq. (4.11a) will propagate in z and £, so that ¢ and ¢ have
the forms

P(xzLw) =85 —2) + p(xz5)1(§ —2),  (4.122)
¢ (x2,60) = $(xz,L0)1(E —2). (4.12b)
Insertion of Eqs. (4.12) in Egs. (4.10) finally results in the
layer-stripping algorithm

AImk

ky=0

Ky = w/C
y o > Rek

W/CO

FIG. 4. Regions where &(x,z = 0,k) may be computed from the data.
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J a %
(az + a_é_) ¢(x9z9§’w) - ¢(x’z’§’w)’ (4133)
9 d\; a’
(4.13b)
Vixzo) = —28(xz2f =z%0). (4.13¢)

The coupled set of equations (4.23) can be downward con-
tinued in z, as in the method of Sec. III. The algorithm is
initialized using

P(xz=0w) =0, (4.14a)
$(xz=0%0)
= —p(xz=0)"%a,(xz=0%w)
=p(xz=0)""?
XF i [8, (xz=0k2 =0/} —kw)]. (4.14b)

Note in particular that ¥(x,z;®) is obtained using

Vixzw) = —28(x26 =2%0)
12 fe _
= &J a, (x,z,k;w)e’™ dk, (4.15)
T —

so that data for all k are used to determine V. This is more
stable numerically than obtaining ¥ exclusively from high-k
data using the initial value theorem. This is especially impor-
tant here, since data for large k can only be obtained from the
data g, (x, y,z = O;w) by analytic continuation, which may
be quite unstable numerically. To avoid this, we may set
a (x,z,k;0) equal to zero for k> w/c,, as discussed earlier;
this will result only in a loss of resolution in reconstucting
Vix,z;w).

After performing the experiment twice, using two dif-
ferent source frequencies @, and w,, and reconstructing the
potentials V{(x,z;w,) and V(x,z;0,), p(x,z) and c(x,z) are
recovered as follows. We have from Eq. (4.4),

1 1 V(xzw,) — V(xz; wz)

c(x,z)z_;__ @ —o) (4.16a)
4] 1 2
p(x’z)l/ZVz(p(x,Z)—l/Z)

= (@3 V(x,z;0,) — 0} V(x,2,0,))/ (0} — 0}), (4.16b)

and Eq. (4.16b) can be solved, sincep (x,z)
and z, and p(x,z = 0) is known.

The algorithm given by Eqgs. (4.13) is a generalization
of the algorithm for the one-dimensional inverse acoustic
problem for a point harmonic source, which was given by
Yagle and Levy.'’ In that paper { was interpreted as a ficti-
cious depth coordinate, along which image source distribu-
tions are being computed in order to synthesize the response
of the medium below depth z. The causality of 1 and ¢ is then
a consequence of the principle that an image source never
lies in that part of the medium in which the field is to be
synthesized. The first nonzero value of ¢(x,z,;0) synthe-
sizes the primary reflection at the point (x,z), which is
V(x,z;w). Note that for each x,, the first nonzero value of
& (x0,2,6;0) [which is ¢(xy,z,f =2z%;w)] can only depend
on V(xpz;w); other values V(x,z;w) cannot affect
é(x0,2,6 = z*;w) by causality in {.

= p, for large |x|
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An alternative to probing the medium with harmonic,
single-frequency waves is to probe it with an impulsive (all
frequencies) plane wave. This requires a different math-
ematical formulation from the present problem. Probing the
medium twice, at two different angles of incidence, would
allow the recovery of p(x,z) and ¢(x,z) separately. This is a
higher-dimensional version of the problem solved by Coen**
using integral equations, and by Yagle and Levy"® using a
layer-stripping algorithm. However, the lateral variation of
c(x,z) implies that the wave front for this problem { which is
in (x,z,¢) rather than (x,z,{) ] will not be planar. Since, in a
layer-stripping algorithm, the reconstruction of the medium
parameters takes place along the wave front, it is necessary
to make a transformation to wave-front centered (or ray
centered) coordinates, run the algorithm using these coordi-
nates, and then transform the reconstructed parameters
back into Cartesian (x,z) coordinates. An algorithm for
solving this inverse seismic problem using this procedure is
given in Yagle'S; the numerical performance of this algo-
rithm is unknown.

Rose et al.'8 point out that the representation theorem
could be used to reconstruct the wave field, and the location
of the characteristic surfaces (wave fronts) thus inferred
from the various positions of the probing impulse. The ei-
konal equation could then be used to recover c(x). However,
this method uses far-field data and transmitted data, where-
as in an actual inverse seismic problem the data are obtained
in the near field and transmitted data are not available.

Note that the problem of nonplanar wave fronts does
not arise for the plasma wave equation (2.5), since the wave
speed is implicitly unity. For the inverse problem with a har-
monic source, the wave speed in (2,{) space is also implicitly
unity. But for time-domain inverse seismic problems, the
lateral variation of the wave speed c¢(x,z) will lead to wave
front definition problems, and other problems such as caus-
tics (see Yagle!S and Rose et al.'®).

V. BORN APPROXIMATION INVERSION METHODS

The coupling of the first-order system (3.3) is necessary
to account for multiple scattering events. In this section the
effect of neglecting this coupling is compared to several Born
approximation inversion techniques.

The (first) Born approximation applied to a Schro-
dinger equation scattering problem is as follows. In the Lipp-
man-Schwinger equation (2.2) the field p(y,k;e; ) inside the
inhomogeneous region is replaced by the incident field. Then
Eq. (2.2) becomes

PP(xke,) =e” o™ —f (4rjx —y|) !

Xe~*FAp(y)e" Y dd, (5.1
where the superscript B indicates that the Born approxima-
tion has been used. Note that the only unknown in Eq. (5.1)
is the potential V(x).

The Born approximation is often described as a “weak
scattering” approximation. While this is true, it conceals the
main point of Eq. (5.1), which is that the scattered field is
arising solely from interactions of the incident probing plane
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wave with the potential. In other words, the Born approxi-
mation is a single scattering approximation: multiple scatter-
ing events are neglected.

To illustrate this explicitly, consider the one-dimension-
al Schrodinger inverse scattering problem. The Lippman-—
Schwinger equation for this problem is

pzk) =e”"’"—f%e‘”‘"""V(z’)ﬁ(z’,k)dz’, (5.2)
1l

which in the Born approximation becomes

PPzh)y=e ™

—f_ie“k""'V(z’)e‘i”dz'. (5.3)
ik
If backscattered data (i.e., data for negative values of z) are

being measured, the equation for the scattered field p2(z,k)
is

PR(zk) = — e""’-_—IEJ- V(z')e 2% dz. (5.4)
i

Taking the partial derivative of Eq. (5.4) with respect to z,

and following with an inverse Fourier transform with re-

spect to k yields, at z =0,

a B J ’ , ’ 1 (t)

—p2(0)= — | V(Z)V6(t—-22')Ydz’ = —— V|—]).

é’zp,( t) (2)o(: Ydz 5 5
(5.5)

Equation (5.5) depicts that the Born approximation is
really doing: imaging the potential profile V(z) from the
response dpP/dz, which arises from the jump in the scattered
field at z. The probing wave requires time ¢ /2 to reach loca-
tion z = ¢ /2 and the response dp?/dz caused by the jump in
thefieldatz =t /2 [dueto ¥(z =t /2)] requirestime ¢ /2 to
make it back to the surface z=0. Hence examining
(3/3z)p2(0,t) images V(¢ /2). Conversely, every nonzero
value of (d/3z)p?(0,¢) is interpreted as a nonzero value of
V(t/2), i.e.,, multiple scattering events are being neglected.
Note also that Eq. (5.5) is the fundamental identity with the
scattered field back-propagated to z = 0 without any addi-
tional scattering (i.e., using the Born approximation).

Two other comments should be made. First, iterative
substitution of p(z,k) in the Lippman-Schwinger equation
(5.2) will yield contributions to the scattered field due to
multiple scattering events. The resulting Neumann series
will converge if ¥(z) is small (see Simon?*). The nth term of
this series accounts for scattering events of order #, making it
the Fourier transform of the Bremmer series. Second, the
inhomogeneous variable-velocity wave equation can be
treated as a Schrodinger equation with potential
k*cy *> —c(z)~?). For this problem, an inverse Fourier
transform of Eq. (5.4) with respect to k yields at z = 0.

27

o l—c(z) 2= 2-[

0

pE(0")dt’, (5.6)
where ¢ has been replaced by 22’ for clarity.

These ideas all generalize to higher dimensions. For ex-
ample, if the Born approximation is applied to the definition
of the scattering amplitude Eq. (2.4), the result is
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AP (ke e) = — f V(y)e =¥ g3y, (5.7)

and an inverse Fourier transform with respect to & yields
RIVOOI2 [ Vi + (e, — e 3y

= —R%(te,), (5.8)

where the left side of Eq. (5.8) is the Radon transform of
V(y) (see Deans* for a discussion of the Radon transform
and inversion techniques for it). In particular, for back-
scattered data (e, = — e;) we have [cf. Eq. (5.5)]

f V(y)6(t—2e,-y)d’y = —RB(t,—e,e;), (5.9)

while for transmission data (e, =e;), we have, from Eq.
(5.7,

f V(y)d’y = — A (ke;e). (5.10)
These equations are all generalizations of the one-dimen-
sional results, and illustrate that the Born approximation is a
single scattering approximation.

Following Rose et al.,” we also have from Eq. (5.7) that

V(X) = _Fq—l[A B(k9es9ei)]’ (511)
where the inverse Fourier transform is taken with respect to
q=k(e, —¢;). (5.12)

Equations (5.8) and (5.11) are related by the well-known
relation (Deans,® p. 97)

FtR(e,—e,) [V(x)] = FxFy [ V(X) ] I(kx,ky) =q=k(e,—e)).
(5.13)

Having discussed the Born (single scattering) approxi-
mation, we now consider the effect of a single scattering ap-
proximation for the layer-stripping procedure (3.3). The
purpose of the coupled system (3.3a) and (3.3b) is to ac-
count for all multiple scattering events. Thus the single scat-
tering approximation to the procedure is simply Eq. (3.3c).
Note that the fundamental identity, Eq. (3.3c), yields V(x)
without requiring an inverse Radon transform. But when the
jump in the scattered field g(x,¢) is propagated from the
wave front back to the receiving surface on which data are
taken, the scattered fields from various points on the wave
front interfere with each other, and an inverse Radon trans-
form becomes necessary to sort out the various contribu-
tions.

To illustrate this point, we now consider two different
Born approximation inversion methods. The first uses far-
field data, in the form of the scattering amplitude, and con-
sists of solving Eq. (5.8) for V(x). The other, due to Rose et
al.,? uses near-field data, and also requires an inverse Radon
transform. We now show that both of these Born approxi-
mation methods are in fact direct consequences of the funda-
mental identity

Vix) = —24(x,t =¢; *x), (5.14)
which is the single scattering approximation to the proce-

dure (3.3). It should be noted here that since both methods
rely exclusively on high-k data, the Born (weak scattering)
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approximation becomes exact.

To see this explicitly for the far-field data Born approxi-
mation method we note that when the Born approximation
is used inside the Marchenko integral equation (2.8), the
first term on the right-hand side of (2.8) disappears, and we
obtain

PRute) = = | SRP(— e, xe,0)d %,
(5.15)
This leads to (recallz = e, * x)
Jd a
B 2£5€; =(— _) 2 .18,
g (xte;) az+at Ps (x,5;e;)
1 d?
= ——8—; E?RB(t—es ‘X,es,e,-)
“(l—e e)d%,, (5.16)

and substituting ¢ = e, - x and changing the variable of inte-
gration to §e = e; — e, results in

248 (x,t =¢; * x;¢;)

=L -‘iz—R B(t = e+ x)d?*(5e)
872 J dr? ’
since the Jacobian of the transformation is |e; —e,|?
=2(1 — e, * ¢,). But the right-hand side of Eq. (5.17) is an
inverse Radon transform (see Deans,” p. 111), and from
Eq. (5.8) wesee thatitis — V(x). The left-hand side of Eq.
(5.17) can be identified to 2§ (x,t = e, * x;e,) since in high-
frequency limit the Born approximation is exact, and Eq.
(5.4) shows that it is equal to — V(x). This links the two
approaches together, and proves that they are equivalent.
The near-field data Born approximation method con-
sidered next was given by Rose et al.2 A simple derivation of
their result is now given. Let B(x) be the jump in the scat-
tered field when the wave front passes through x, so that

(5.18)

Here B(x) is measured over the surface of a sphere that
contains the support of ¥V(x) (this is the near-field data).
Let S be the disk that is the intersection of this sphere with
the plane x-e'=h, where e'le;, and A varies, and let
e* == ¢' Xe,. The situation is illustrated in Fig. 5. We then
have, using a well-known identity,

(5.17)

B(x) =p,(x,t=¢e;*x";e;).

j Bdr=dexVB, (5.19)
as S
and taking the dot product with — 2e* gives
—2| Be*-dr= —ZJe* «(dSXVB)
as S
= — Zf VB - (e*XdS)
A)
=f (—2VB-e;)dS
S
=J‘ V(x)dS =R [V(x)], (5.20)
S

where d S = dS e' is a differential surface area in the direc-
tion e, and the “miracle” equation (2.11) has been used. By
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letting e, vary over a half-plane, enough information is
gained to invert R[¥(x)]. Note that the Born approxima-
tion is implicitly used in the assumption that all nonzero
values of B arise from a nonzero value of ¥V (x). However,
since this method uses only data for large k, multiple scatter-
ing events ae negligible and the method is exact.

To interpret this result, define the positive x, y, and z
axes to bein the direction e, e*, and e,, respectively [see Fig.
5(b)]. The probing plane wave passes through the origin at
t =0, as before. Now, note that e* - dr in Eq. (5.20) is the
projection of dr on a line L parallel to the y axis. Hence, the
left side of Eq. (5.20) can be interpreted as minus twice the
integral of B(x) (the jump in the scattered field at x as the
wave front passes) over the line L if L lies in the homogen-
eous region beyond (i.e., for large z) the support of ¥ (x). To
see this, note that from the fundamental identity Eq. (3.6)
that B(x) does not vary in the z direction in the homogen-
eous region. Therefore, each point x on S *, the far side of
dS, can be projected to an image point x* on L, as shown in
Fig. 5(b), and we will have B(x) = B(x*). We also have
that B(x) on the near side of 45 is zero.

This same result follows directly if the fundamental
identity Eq. (3.6) is integrated over S. The result is

fV(x)dydz: -2 —a—lidydz
s s Oz

= — Zf B(x)dy = — ZJ B(x)dy,
as+ L

(5.21)

which, by the interpretation given above, is the same as the
left side of Eq. (5.20). Thus the near-field data Born inver-

incident plane
wave front

FIG. 5. (a) Setup for the near-field, Born, approximation inverse scattering
procedure (side view). (b) Setup for the near-field, Born-approximation
inverse scattering procedure (top view).

1709 J. Math. Phys., Vol. 27, No. 6, June 1986

sion method is also related to the single scattering approxi-
mation to the layer-stripping procedure (viz., the fundamen-
tal identity). The exact nature of this relation depends on
how B(x) is computed. If B(x) is computed using exclusive-
ly large-k data (by means of the initial value theorem), then
multiple scattering events are negligible and both methods
are exact. However, if data at a// values of k are to be used to
compute B(x) (by means of an inverse Fourier transform),
then the near-field Born method cannot be so used, and the
layer-stripping procedure single scattering approximation is
in fact only approximate.

As a final note, if source-receiver configurations differ-
ent from those considered so far in this paper are employed,
then Born approximation inversion techniques may involve
projections other than the Radon transform. For example, if
an impulsive point source is used to probe the inhomogen-
eous region, it might be expected that the response at the
point source at time 2¢ might be the spherical mean of V(x)
over a sphere of radius 7 centered on the point source. This is
indeed the case, as is now demonstrated, following Norton
and Linzer.”> Application of the Born approximation to the
Lippman—-Schwinger equation for this problem results in

e kixo—yl e~ 1y —xol

P2(x,k) =f V(y) d’y
|xo — ¥| [y — X,

e~ 2kly — x|
= f V(y) ————d%,
|y — o
where the point source and receiver are located at x,. An
inverse Fourier transform with respect to 2« results in

(5.22)

2Pf(X,21)=JV(y)Md3y

|y—"o|2
- t—lzf VWS — [y —xDd%,  (523)

which is the spherical mean of ¥ (x) over a sphere of radius ¢
centered on x,, as expected. Norton and Linzer®® and Faw-
cett?® have obtained analytic inversion formulas for Eq.
(5.23). Cohen and Bleistein® obtained an equation similar to
Eq. (5.23) for the inhomogeneous wave equation in two di-
mensions, and they also derived an analytic inversion for-
mula.

VI. CONCLUSION

A fast algorithm for solving Schrédinger equation in-
verse scattering problems has been obtained by utilizing the
concept of layer stripping. This procedure differentially re-
constructs both the scattered wave field and the potential,
with the potential being obtained from the jump in the scat-
tered field at the wave front. Thus the potential is differen-
tially reconstructed along the wave front as the probing
plane wave penetrates the inhomogeneous region. The layer-
stripping procedure is “fast” in that it requires fewer compu-
tations to reconstruct the potential than the integral equa-
tion method of Newton. This results from the fact that the
procedure takes full advantage of the inherent, causality-
induced structure of the inverse scattering problem.

The fact that near-field, backscattered data are used to
initiate the procedure makes it more suitable for application
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to inverse seismic problems than Newton’s integral equation
method, which requires far-field data measured in all direc-
tion for incident waves from all directions. This was illus-
trated and discussed in Sec. IV. This choice of data also
avoids the problems of overdetermination and ill-posedness
that arise in Newton’s method, although numerical instabil-
ity might be a problem. Of course, data for several directions
of incidence could be used, and a three-dimensional least-
squares fit applied to the resulting potentials as they are com-
puted. This should reduce the effect of noise on the recon-
structed potentials. The numerical performance of this algo-
rithm, and the effects of noisy and band-limited data on its
operation is an important topic that requires more research.

The coupling in the layer-stripping algorithm (3.3) ac-
counts for multiple scattering events. Neglecting this cou-
pling left Eq. (3.3c), which is also the fundamental identity
Eq. (2.11). This equation yields the potential directly from
the jump in the scattered field at the wave front. Propagation
of this field to the surfaces on which data are collected leads
to complications that are manifested in Born approximation
inversion methods by the appearance of the Radon trans-
form. Two different Born approximation inversion methods
were derived and interpreted, and were then related to the
wave field induced by the fundamental identity. This illus-
trated the single scattering assumptions inherent in the un-
coupled layer stripping procedure and in the Born inversion
procedures themselves. These latter procedures are exact
only if high-energy data are used exclusively.

It is important to note that the layer-stripping algorithm
is in principle exact, since it is equivalent to the Schrodinger
equation itself. In addition, it uses data of all energies, in-
stead of relying only on high-energy data as does the Born
approximation. It is in fact a differential method that is dual
to Newton’s integral equation method, but it is considerably
more efficient, since it avoids solving infinitely many three-
dimensional integral equations.
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The Feynman rules for the Anderson model with a (2J + 1)-component localized spin are
formulated by means of a generalized Wick’s expansion together with the reduction formulas in
the thermo-field-dynamics. In the U— o limit, Feynman rules for arbitrary J correspond closely
to those for the case J = | and may be obtained from them by a simple replacement rule.

I. INTRODUCTION

The many-body effects arising from interactions
between localized electrons and conduction electrons con-
tain many field-theoretical problems, such as a strong cou-
pling theory, a localized—delocalized problem, and the
Kondo effect. There are many publications on these prob-
lems to study using the diagrammatic method.’-> Although
the perturbation scheme may break down in some parameter
regions, we hope to extend its applicability if we combine the
self-consistency** or the renormalization group idea.® De-
spite the fact that the Bethe ansatz method’ gives us an exact
solvable method for the single impurity problems in the
Kondo model® or the Anderson model (in the U— o limit),
diagrammatic approaches are still actively studied because a
related but more difficult problem of the Kondo and the
Anderson lattices still poses a considerable challenge to
theoretical physicists. Analysis of the lattice is quite impor-
tant since the lattice Anderson model, for example, is consid-
ered to be a suitable model for the lattice Kondo effect, va-
lence instabilities,” moment formation in metals,'® metal
insulator transition,’' and recently discovered heavy fer-
mion superconductivity.’? Recently a systematic diagram-
matic method"? for the Anderson model was proposed based
on the real time finite temperature field theory, thermofield
dynamics (TFD)." Feynman rules presented in Ref. 13 are
different from those in the conventional field theory owing
to the fact that free field operators form a closed algebra
different from the harmonic oscillator type and that certain
bosonic operators exist, in that algebra, that commute with
the unperturbed Hamiltonian (let us call these operators
zero-energy bosonic operators). A systematic treatment of
zero-energy bosonic operators was discussed in Ref. 13 for
the first time. In this paper we extend the results of Ref. 13
for the case of spin-} to the general case of a (2J + 1)-spin,
clarifying the mathematical structure to arrive at the gener-
alized Feynman rules. As the following argument will dem-
onstrate, the diagram method is based on a systematic use of
the projection operators P, (n) (see the following) and the
thermal state condition in TFD, '

1711 J. Math. Phys. 27 (6), June 1986

0022-2488/86/061711-05$02.50

Ii. THE (2J + 1)-COMPONENT ANDERSON MODEL

The (2J + 1)-component Anderson model is given by
the following Hamiltonian, H = H, + H,:

Hy=€m +—2qn(n -1 +fd3x ct(x)e( —iV)e(x),

(1)
Hy=|d%3 V., ®)[fl, c,(x) +c} (x)f,.], (2)
where c¢(x) is the conduction electron field,

Sm(m= —J,—J+ 1,..J) is the localized electron opera-
tor,n=3, f! f.,and V, (x) is the potential created by
the localized spin at x = 0 and projects out the total angular
momentum J state from the conduction electron field. Since
[fis fermionic, the eigenvalues of » can only assume values in
the range O to (2J + 1).

We introduce the operator £,, by

§m=P0(n)fms (3)
where Py(n) is the projection operator for the n = 0 state
and is given by

Py(n)=(1=n)2—n)(W+1—-n)/(2J+ 1.
(4)

In general we denote the projection operator for n = / state
by P, (n). Noting that

(5a)
(5b)

P/(n)P,(n)=0, forls#l',
P(n)*=P/(n),

it is easy to see that
[HoP (n)fn] = — (6, +1U)P,(n)f,, . (6)

On the other hand, we have

Py(n)f,, =fmPi(n), (7a)

Py(m) f1, =0, (7b)
and

Pn)fL S, =fLf . Pi(n), (7¢)
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which leads to the result

Smy =0, (8a)

£ €L =5, .Pn), (8b)

X =tVEé. =P(mF,_,, (8¢)
with

F_.=flf.. (8d)
Thus, we obtain the following algebra

[Hobm] = ~€bm s &)

{éné,1=0, (10)

M, ={,80.=8,, Po(n)+P(m)F,. . (11)
We also have

&M, .. =6 6n; (12a)

M, .6=5, .5, (12b)
which leads to the result

[6M,,.. ] = £10 s (13)
with

&, =65 .5, +6,96 . (14)

In order to treat the finite temperature regime we must
associate with each operator a thermal doublet'®; for exam-
ple, £ is replaced by £“ (a = 1,2). The generalization of
(9)-(11) in TFD is given by

(Aol = —e 65, 15)
with H, = H} — H2, and
{s.63)=0, (16)
{22t =6"Mc ,, an
[£0M,, ] =€6"c, . &, (18)
where
e€=1 (a=1),
=—1 (a=2), (19)
and
M2 =P3(n)s . +PS(n)F2, F* =¢fler =
(20)
The relation (8¢) now reads as
Xe  =efdES =PF (m)F .. en

A rather remarkable feature of the result contained in
Egs. (16)—(18) is the fact that the operators £ and M form a
closed algebra. This considerably simplifies the calculation
of time ordered products of the operators £,,,

(Ted an- g an gl a7 ),
where T denotes the time-ordered products in TFD. This is
of particular importance when we consider the limiting case
U— 0, since in this limit only the £ contribution to f re-
mains. However, it should be noted that the results con-
tained in this paper involve no assumptions about the size of
U. Furthermore the additional terms involving ( f— &),
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FIG. 1. Diagrammatic expres-
sion for £ and £1.

which occur in the U # «, may be evaluated by methods
analogous to those described here for the £ products.

By use of the algebra contained in Egs. (17) and (18),
we can remove the £ operators successively by means of the
reduction formulas given in Ref. 13. Namely £ a(¢'y and
£°7(2) are contracted to give the propagator S**(t' — 1)
defined by

St —1) =;J<dw e ieli—1)
2

XUp(w) [0 — € +ib7] ' UL(w),
(22)
with the appropriate weight associated with the end points.
In Eq. (22), Ug (@) denotes the fermionic thermal transfor-
mation matrix given by

Ur(@w) = (23)

—( o)
W ~1 eBw/z ’
The appropriate weights are summarized diagrammatically
in Fig. 1; £ behaves as an annihilation operator, while £
behaves both as a creation operator with weight M and as the
vertex with the weight €*¢, where ¢ is the matrix given in
(14). After all the £ operators have been removed in this way
we are left with the time-ordered products involving only M;
(TM *(¢,)- M*(t;)) . Themulti-M function may be eval-
uated in a variety of ways. In the following, we present one
repesentative method.

First, we note the relation

(TM = (t,) M (1))
= (Py(n)) + (P, (M)TF*(t,) F™(1))) . (24)

Here we have used (5b), (7c¢), (8d), (11), and
[Pi(n),Hy] =O0. In the derivation of Eq. (24) we made
successive use of the thermal state condition
(P%..) = (P,-.). We can write

1
F ,=—w—|6 A F] 25
o 2J+1[""""+§.-:( ) it (25)

where
A, (=12, ,(A+1)X(2J+1)-1)

are (2J + 1) X (2J + 1) matrices, which are both Hermi-
tian and traceless and which satisfy

Tr[A4,] =6, (26)

and the F; are given by
F=3 f1 Q)i - (27
Matsumoto, Limezawa, and Whitehead 1712



With this notation, we have

’ 1
)i:m' =_2}T{[_2J6mm n’ +Z(/l )mm (/l )ll ]

(28)

Then from (21), (24), and P,(n)n = P,(n), it follows that
(TM (1) M(t,))

P

P F%
W+ < ,(n)T{1+§/1,F, ()

+i2j/1.~ F7(t)A, F(t)

+ o +A‘~] F:TI (tl)"' iil F::l (tl)}> (298,)
1 ]
= (Po(n)) + ———= (P,(M)) + ———
o(n)) (2]+1)I( () T+ 1)
x| o x7 w
+Z (TA, X7 (604, X7 (1)) + - (29b)

Here use was made of Eq. (21). It now remains to calculate
products of the form (T X2 (¢,)- X7/ (1)) .
To evaluate such terms diagrammatically, we look fora

reduction formula for the quantities of the form
(TX3 (1) X7 (2)) with

X5 (t)=€"E1°4E = P2 (n)efre4re, (30)
J

(TX5 (1) X5 (1) X5 (1)) =

+Yes (e
Jj

= —(TX3 (¢t X§

+ S ATXY
j

— €SP —(TX, (D X5 ()

where 4 stands for any (2J + 1) X (2J 4 1) matrix. Note
that we have

[foXxy] =874l . (31a)
In particular, when 4 = 4,, we have
[£7X)] =8"€4,87. (31b)

Then Egs. (16)-(21) together with the relation Py(n)
X . = 0 give the following reduction formulas:

(TES (10XG (1) X5 (1DEF (1)
=S’ —t)5m1[<Po("))+(U+1)-I<P1(n))],

fori=0, (32)
=8%0"' —t)(TX5, (DXL (1) X5 (1))

+ 3 8%t = 6)(4;) puc€”

;,; J J 7 mk

XATXG (1) E2 () X5 (1) EFT (1)),

for i#£0, (33a)
=(TX$, ¢V XT (t) X3 (4)SP(t' —1)
+ SATER (1) XS (4 EF (4 X5 (1))
kJ
XE(A;)mS Pt ~ 1),
for is£0. (33b)

Multiplying both sides of (33) with 4,,,, we obtain

x5 (t~))

— ) (TXEY (1) X% ()= X% (1)) (34a)
L) X3 (6))e’S P — 1)
L)X () XZ' (t))es P, —1), (34b)

when 7>2. Here, use was made of the notation X 57 (£, ') = €°£ *(¢)T4£%(¢') . The notation < in Egs. (34) indicates that
the operator X' 7 , (;) has been omitted from the time ordered product.

Since (25) glves

= (DP(n) + T (42,)X,

with the definition (4)==(2J + 1) "' tr 4, (34) gives
(TX5 (1) X3 (1) X3 (8))

= — e84’ —t){(ANTX“' () X3 (t))+z(A/1 HTXE (X5, (8)-X5 (z,.))]

+ X ST —)(TX,, (1) X5
7

~[<TX‘§: (#)- ,,,(t)>(A)+Z<TX“(t)X (2,)

+ 2 (TXZ3 (48 X3 (1) p?

1713 J. Math. Phys., Vol. 27, No. 8, June 1986

(:,).V..xj; t))

X5 (4,))eS ™ (t; —t

(35)
(36a)
X3 (n-))(xl,,A)]e“saﬁ(z' ~1)
), (36b)
Matsumoto, Umezawa, and Whitehead 1713



for i£0. In particular, when we assume a =pf and
t'=t— €0, Eq. (34) gives

(TX g () Xj' () X3 (1))
— easaaj T aaj .
cos? 6}‘2!: (F=1){TX g (1)
XX% (1) X% (1)) (37a)
=cos 5 Z(TXA,A (#,t)
Xz (t.)f-X31 (#)eSY(L — 1), (37b)

where use was made of the relation
€S ( —€,0) =sin? 8, = 1/(L7+ 1) .

With the particular choice, 4 =4, and 4, =
as

(TXx3 (I)X“' (#)

A;, (37) reads

X7 @)

= €St —
cos2 o, 2,: (

LTX Y (11)
XX (1) X (1)),

1
= TX 7 (t;,t
coszef;( Jja (])

j
= XP ()RS -,

(38a)

XXT () (38b)

where X 2% means €°¢ *'A,4,£° .

The structure of the reduction formula presented in Egs.
(34) and (35) are analogous to those obtained in Ref. 13.
We can therefore simplify the reduction formula in an analo-
gous manner to that presented in Ref. 13. Further reduction
can be achieved by substitution of (36) into (38). If we in-
troduce the notation (ij-+) = (4,4;-) together with the
relation (ikj) = — (jki) we obtain, for i>2,

(TXS ()X T (1) X7 (1))

= (cos’ Gf)‘l[ =Y 8%t —1,)€”
J
XSt — ) (@PTX S (1) = X t,))
+ 3 €3SVt — e’ S (t —~t,)
i

X(TX(I ak (

Jjak

) X (2 ) ...... X ( ))] (39)

Eyf ———xy A

. 1
‘// ’\\ 20%1
——4—77 9A;

FIG. 2. Feynman rules for £ and £7.

e’[-24 181 +1;87]
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TABLE 1. Values of 4 and g.

(Po) (P,) (Poy)
A 1 1/(2JJ+1) 1/(27+1)
g 0 0 1/(27+1)

The reduction formulas (32)-(37) are equivalent to
those presented in Ref. 13 (in which J = } was considered)
when we make the following replacements:

(n)—(P(n)), (1—n)—(Py(n)), (2—n)—(Py),
(40a)
o,—4;, %—>1/(2J+ 1, (40b)
where the projection operator Py, is defined as
Py (n)=(2 + 1)Py(n) + Pi(n) . (41)

Therefore the generalized Feynman rules given in Ref.
13 may be extended to higher values of the multiplicity J
when we make the above replacements. The rules are sum-
marized in Fig. 2 and the weight factors A and g are given in
Table 1.

l1i. CONCLUDING REMARKS

We close this paper emphasizing again that if we restrict
ourselves to time-ordered products involving only £ opera-
tors, then all of the formulas presented in this paper are true
for any value of J and U. In the limit U— oo, we have

(Po) = 1/(1 + (2T + e 59),

(Py) = (W + De” P11 + (2 + De™ ™),
which gives

(Py) =T+ 1)(1+e PN/(1 + (W + De™ ™).

As pointed out earlier in the limit U = <o, we require the
multipoint functions consisting only of £. When U # oo,
there appear other eigenoperators besides £. The calculation
of their multipoint functions may be evaluated by using dia-
grammatic rules similar to the ones presented in this paper.
For example, the operators 7,, and 77!, defined by

(42)

M = Posfms M =f1 Poy s (43)
also form a closed algebra as
{713..’17,,,,} =Py 18, +P2mef,t.'
=¢_ . (44)
and
(70, ] = o, 0, —96,.6.,)n, (45)

Thus nearly all of the present analysis may be used to calcu-
late a time ordered product of the form

(T, (8 5, (8 T 17 (2 D)

with very little modification. The application of the dia-
grammatic techniques described here and in Ref. 13 to spe-
cific problems of interest is currently in progress.
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